Publications by authors named "Stitham J"

Article Synopsis
  • High protein intake, often seen as healthy, may activate mTOR signaling in macrophages, linked to ischaemic cardiovascular disease.
  • Clinical studies reveal that leucine is the main amino acid triggering mTOR activation in macrophages, with significant effects only seen with protein intake over roughly 25g per meal.
  • Research indicates that protein intake above 22% of dietary energy can promote atherosclerosis in male mice, highlighting the cardiovascular risks of excessive dietary protein.
View Article and Find Full Text PDF

Background: The mTOR (mechanistic target of rapamycin) pathway is a complex signaling cascade that regulates cellular growth, proliferation, metabolism, and survival. Although activation of mTOR signaling has been linked to atherosclerosis, its direct role in lesion progression and in plaque macrophages remains poorly understood. We previously demonstrated that mTORC1 (mTOR complex 1) activation promotes atherogenesis through inhibition of autophagy and increased apoptosis in macrophages.

View Article and Find Full Text PDF

Previous studies have demonstrated that a high-protein diet leads to increased atherosclerosis in mice, and that this adverse effect is caused by activation of macrophage mTORC1 signaling. Here, we provide a detailed protocol for the evaluation of diet-induced mTORC1 signaling in plaque macrophages in atherosclerosis-prone apolipoprotein E (ApoE) knockout (KO) mice. This protocol includes flow cytometry and immunofluorescence analysis of atherosclerotic macrophages that can be used to study the atherogenic potential of a variety of mTORC1 modulators.

View Article and Find Full Text PDF

Dysfunction in the macrophage lysosomal system including reduced acidity and diminished degradative capacity is a hallmark of atherosclerosis, leading to blunted clearance of excess cellular debris and lipids in plaques and contributing to lesion progression. Devising strategies to rescue this macrophage lysosomal dysfunction is a novel therapeutic measure. Nanoparticles have emerged as an effective platform to both target specific tissues and serve as drug delivery vehicles.

View Article and Find Full Text PDF

The autophagy-lysosome system is an important cellular degradation pathway that recycles dysfunctional organelles and cytotoxic protein aggregates. A decline in this system is pathogenic in many human diseases including neurodegenerative disorders, fatty liver disease, and atherosclerosis. Thus there is intense interest in discovering therapeutics aimed at stimulating the autophagy-lysosome system.

View Article and Find Full Text PDF

Introduction: Inflammasomes are central to atherosclerotic vascular dysfunction with regulatory effects on inflammation, immune modulation, and lipid metabolism. The NLRP3 inflammasome is a critical catalyst for atherogenesis thus highlighting its importance in understanding the pathophysiology of atherosclerosis and for the identification of novel therapeutic targets and biomarkers for the treatment of cardiovascular disease.

Areas Covered: This review includes an overview of macrophage lipid metabolism and the role of NLRP3 inflammasome activity in cardiovascular inflammation and atherosclerosis.

View Article and Find Full Text PDF

Diabetes mellitus (DM) is a growing international concern. Considerable mortality and morbidity associated with diabetes mellitus arise predominantly from thrombotic cardiovascular events. Oxidative stress-mediated mitochondrial damage contributes significantly to enhanced thrombosis in DM A basal autophagy process has recently been described as playing an important role in normal platelet activation.

View Article and Find Full Text PDF

Prostacyclin (PGI2) and other metabolites of arachidonic acid are increasingly recognized for their role in the pathophysiology of human disease. A growing body of evidence from randomized controlled trials, studies of human prostacyclin receptor (hIP) variants, and IP-receptor knockout studies in mice has shown that PGI2 may have a protective effect on atherothrombotic risk. Increased risk of atherosclerosis and thrombotic sequelae may be attributed, in part, to downregulation of the prostacyclin pathway.

View Article and Find Full Text PDF

An elevated level of von Willebrand factor (VWF) in diabetic patients is associated with increased risk of thrombotic cardiovascular events. The underlying mechanism of how VWF expression is upregulated in diabetes mellitus is poorly understood. We now report that hyperglycemia-induced repression of microRNA-24 (miR-24) increases VWF expression and secretion in diabetes mellitus.

View Article and Find Full Text PDF

Sphingosine 1-phosphate receptor 1 (S1P₁), an abundantly-expressed G protein-coupled receptor which regulates key vascular and immune responses, is a therapeutic target in autoimmune diseases. Fingolimod/Gilenya (FTY720), an oral medication for relapsing-remitting multiple sclerosis, targets S1P₁ receptors on immune and neural cells to suppress neuroinflammation. However, suppression of endothelial S1P₁ receptors is associated with cardiac and vascular adverse effects.

View Article and Find Full Text PDF

The use of antithrombotic agents, particularly antiplatelet drugs like aspirin and clopidogrel, has been instrumental in decreasing the risk for adverse cardiovascular events across a wide range of patients. However, despite the established benefits, the use of these medications remains suboptimal. There is a high degree of inter-individual variation in response to these treatments, whereby patients experience occlusive thromboembolic events, in spite of maintaining an appropriate treatment regimen.

View Article and Find Full Text PDF

Recent changes to the clinical management guidelines for hypertension and hyperlipidemia have placed emphasis on prevention through the pharmacological control and reduction of cardiovascular risk factors. In conjunction with proper diet and lifestyle changes, such risk factor control necessitates the use of safe and effective pharmacotherapy. However, many patients fail to reach or maintain therapeutic goals due to inadequacy and/or variability in response to antihypertensive and lipid-lowering medications.

View Article and Find Full Text PDF

Background: Platelet abnormalities are well-recognized complications of diabetes mellitus. Mitochondria play a central role in platelet metabolism and activation. Mitochondrial dysfunction is evident in diabetes mellitus.

View Article and Find Full Text PDF

Thromboxane and its receptor have emerged as key players in modulating vascular thrombotic events. Thus, a dysfunctional hTP genetic variant may protect against (hypoactivity) or promote (hyperactivity) vascular events, based upon its activity on platelets. After extensive in silico analysis, six hTP-α variants were selected (C(68)S, V(80)E, E(94)V, A(160)T, V(176)E, and V(217)I) for detailed biochemical studies based on structural proximity to key regions involved in receptor function and in silico predictions.

View Article and Find Full Text PDF

Cardiovascular disease is the foremost cause of morbidity and mortality in the Western world. Atherosclerosis followed by thrombosis (atherothrombosis) is the pathological process underlying most myocardial, cerebral, and peripheral vascular events. Atherothrombosis is a complex and heterogeneous inflammatory process that involves interactions between many cell types (including vascular smooth muscle cells, endothelial cells, macrophages, and platelets) and processes (including migration, proliferation, and activation).

View Article and Find Full Text PDF

Diabetes mellitus is associated with platelet hyperactivity, which leads to increased morbidity and mortality from cardiovascular disease. This is coupled with enhanced levels of thromboxane (TX), an eicosanoid that facilitates platelet aggregation. Although intensely studied, the mechanism underlying the relationship among hyperglycemia, TX generation, and platelet hyperactivity remains unclear.

View Article and Find Full Text PDF

The prostacyclin receptor (IP--International Union of Pharmacology nomenclature) is a member of the seven transmembrane G-protein coupled receptor (GPCR) superfamily. Recent concerns with selective and non-selective COX-1/COX-2 inhibition have exposed an important cardioprotective role for IP in preventing atherothrombosis. Receptor dysfunction (genetic variants) or reduced signaling (COX-2 inhibition) in high cardiovascular risk patients leads to increased cardiovascular events.

View Article and Find Full Text PDF

Prostacyclin (PGI(2)) is a member of the prostaglandin family of bioactive lipids. Its best-characterized role is in the cardiovascular system, where it is released by vascular endothelial cells, serving as a potent vasodilator and inhibitor of platelet aggregation. In recent years, prostacyclin (PGI(2)) has also been shown to promote differentiation and inhibit proliferation in vascular smooth muscle cells.

View Article and Find Full Text PDF

Currently, pharmacogenetic studies are at an impasse as the low prevalence (<2%) of most variants hinder their pharmacogenetic analysis with population sizes often inadequate for sufficiently powered studies. Grouping rare mutations by functional phenotype rather than mutation site can potentially increase sample size. Using human population-based studies (n = 1,761) to search for dysfunctional human prostacyclin receptor (hIP) variants, we recently discovered 18 non-synonymous mutations, all with frequencies less than 2% in our study cohort.

View Article and Find Full Text PDF

Objective: Prostacyclin and thromboxane mediate opposing cardiovascular effects through their receptors, the prostacyclin receptor (IP) and thromboxane receptor (TP). Individuals heterozygous for an IP variant, IP(R212C), displayed exaggerated loss of platelet IP responsiveness and accelerated cardiovascular disease. We examined association of IP(R212C) into homo- and heterodimeric receptor complexes and the impact on prostacyclin and thromboxane biology.

View Article and Find Full Text PDF

Objective And Methods: The role of prostacyclin in the development of venous thrombosis and vascular dysfunction in humans is unclear. In patients with deep vein thrombosis (DVT, n=34) and controls (matched for age, sex, indexes of systemic inflammation and metabolic status, n=20), we studied (i) differences on systemic markers of vascular disease and platelet activation and (ii) the influence of prostacyclin receptor gene (PTGIR) polymorphisms.

Main Results: Enhanced levels of urinary 11-dehydro-thromboxane (TX)B2 and plasma [soluble(s)] P-selectin, mostly platelet derived, were detected in DVT patients, whereas plasma von Willebrand factor levels and intima-media thickness of the common carotid arteries were not significantly different.

View Article and Find Full Text PDF

Recent increased adverse cardiovascular events observed with selective cyclooxygenase-2 inhibition led to the withdrawal of rofecoxib (Vioxx) and valdecoxib (Bextra), but the mechanisms underlying these atherothrombotic events remain unclear. Prostacyclin is the major end product of cyclooxygenase-2 in vascular endothelium. Using a naturally occurring mutation in the prostacyclin receptor, we report for the first time that a deficiency in prostacyclin signaling through its G protein-coupled receptor contributes to atherothrombosis in human patients.

View Article and Find Full Text PDF

Cardiac fibroblasts produce and degrade extracellular matrix and are critical in regulating cardiac remodeling and hypertrophy. Fibroblasts are activated by factors such as transforming growth factor beta and inhibited by agents that elevate 3',5'-cyclic adenosine monophosphate (cAMP) levels. cAMP signal generation and response is known to be compartmentalized in many cell types in part through the colocalization of receptors and specific adenylyl cyclase isoforms in lipid rafts and caveolae.

View Article and Find Full Text PDF

Background And Purpose: The human prostacyclin receptor (hIP), a G-protein coupled receptor (GPCR) expressed mainly on platelets and vascular smooth muscle cells, plays important protective roles in the cardiovascular system. We hypothesized that significant insights could be gained into the structure and function of the hIP through mutagenesis of its energetically unfavourably located transmembrane charged residues.

Experimental Approach: Within its putative transmembrane helices fourteen hydrophilic residues, both unique and conserved across GPCRs, were systematically mutated to assess for effects on receptor structure and function.

View Article and Find Full Text PDF

The human prostacyclin receptor (hIP) has recently been recognized as an important seven transmembrane G-protein coupled receptor that plays critical roles in atheroprevention and cardioprotection. To date, four non-synonymous genetic variants have been identified, two of which occur at the same Arg amino acid position (R212H, R212C). This observation instigated further genetic screening for prostacyclin receptor variants on 1455 human genomic samples.

View Article and Find Full Text PDF