Publications by authors named "Stipp C"

The Rac1 P29S hotspot mutation in cutaneous melanoma is associated with resistance to MAPK pathway inhibitors (MAPKi) and worse clinical outcomes. Moreover, activation of Rac1 guanine exchange factors (GEFs) also promotes MAPKi-resistance, particularly in undifferentiated melanoma cells. Here we delineate mechanisms of Rac1-driven MAPKi-resistance and identify strategies to inhibit the growth of this class of cutaneous melanomas.

View Article and Find Full Text PDF

Ribonucleotide reductase (RNR) is the rate-limiting enzyme in the synthesis of deoxyribonucleotides and the target of multiple chemotherapy drugs, including gemcitabine. We previously identified that inhibition of RNR in Ewing sarcoma tumors upregulates the expression levels of multiple members of the activator protein-1 (AP-1) transcription factor family, including c-Jun and c-Fos, and downregulates the expression of c-Myc. However, the broader functions and downstream targets of AP-1, which are highly context- and cell-dependent, are unknown in Ewing sarcoma tumors.

View Article and Find Full Text PDF

Epithelial-mesenchymal transitions (EMTs) are thought to promote metastasis via downregulation of E-cadherin (also known as Cdh1) and upregulation of mesenchymal markers such as N-cadherin (Cdh2) and vimentin (Vim). Contrary to this, E-cadherin is retained in many invasive carcinomas and promotes collective cell invasion. To investigate how E-cadherin regulates metastasis, we examined the highly metastatic, E-cadherin-positive murine 4T1 breast cancer model, together with the less metastatic, 4T1-related cell lines 4T07, 168FARN and 67NR.

View Article and Find Full Text PDF

Background: Tetraspanin CD151 is highly expressed in endothelia and reinforces cell adhesion, but its role in vascular inflammation remains largely unknown.

Methods: In vitro molecular and cellular biological analyses on genetically modified endothelial cells, in vivo vascular biological analyses on genetically engineered mouse models, and in silico systems biology and bioinformatics analyses on CD151-related events.

Results: Endothelial ablation of leads to pulmonary and cardiac inflammation, severe sepsis, and perilous COVID-19, and endothelial CD151 becomes downregulated in inflammation.

View Article and Find Full Text PDF

The evolution of therapeutic resistance is a major obstacle to the success of targeted oncology drugs. While both inter- and intratumoral heterogeneity limit our ability to detect resistant subpopulations that pre-exist or emerge during treatment, our ability to analyze tumors with single-cell resolution is limited. Here, we utilized a cell-based transposon mutagenesis method to identify mechanisms of BRAF inhibitor resistance in a model of cutaneous melanoma.

View Article and Find Full Text PDF
Article Synopsis
  • Abl kinases are often seen as promoting cancer, but they can also inhibit tumor cell growth and movement under certain conditions.
  • Using RNA interference, researchers studied the impact of Abl kinases on aggressive metastatic prostate cancer to understand their role in tumor progression.
  • The findings showed that reducing Abl kinases led to more aggressive cancer traits, with increased cell motility and growth, highlighting the importance of these kinases in suppressing cancer cell activity and spread.
View Article and Find Full Text PDF

Rare gain-of-function mutations in RAC1 drive drug resistance to targeted BRAF inhibition in cutaneous melanoma. Here, we show that wildtype RAC1 is a critical driver of growth and drug resistance, but only in a subset of melanomas with elevated markers of de-differentiation. Similarly, SRC inhibition also selectively sensitized de-differentiated melanomas to BRAF inhibition.

View Article and Find Full Text PDF

The histone methyltransferase PRC2 plays a complex role in cancer. Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas with frequent loss-of-function mutations in PRC2 that are associated with poor outcome. Here, we identify a critical role for PRC2 loss in driving MPNST metastasis.

View Article and Find Full Text PDF

Patients with malignant melanoma have a 5-year survival rate of only 15-20% once the tumor has metastasized to distant tissues. While MAP kinase pathway inhibitors (MAPKi) are initially effective for the majority of patients with melanoma harboring BRAF mutation, over 90% of patients relapse within 2 years. Thus, there is a critical need for understanding MAPKi resistance mechanisms.

View Article and Find Full Text PDF

During metastasis, cancer cells are exposed to potentially destructive hemodynamic forces including fluid shear stress (FSS) while en route to distant sites. However, prior work indicates that cancer cells are more resistant to brief pulses of high-level FSS in vitro relative to non-transformed epithelial cells. Herein, we identify a mechano-adaptive mechanism of FSS resistance in cancer cells.

View Article and Find Full Text PDF

Aiming to identify immune molecules with a novel function in cancer pathogenesis, we found the cluster of differentiation 177 (CD177), a known neutrophil antigen, to be positively correlated with relapse-free, metastasis-free, or overall survival in breast cancer. In addition, CD177 expression is correlated with good prognosis in several other solid cancers including prostate, cervical, and lung. Focusing on breast cancer, we found that CD177 is expressed in normal breast epithelial cells and is significantly reduced in invasive cancers.

View Article and Find Full Text PDF

The use of selective BRAF inhibitors (BRAFi) has produced remarkable outcomes for patients with advanced cutaneous melanoma harboring a mutation. Unfortunately, the majority of patients eventually develop drug-resistant disease. We employed a genetic screening approach to identify gain-of-function mechanisms of BRAFi resistance in two independent melanoma cell lines.

View Article and Find Full Text PDF

Unlabelled: Most hepatocellular carcinomas (HCCs) develop in a chronically injured liver, yet the extent to which this microenvironment promotes neoplastic transformation or influences selective pressures for genetic drivers of HCC remains unclear. We sought to determine the impact of hepatic injury in an established mouse model of HCC induced by Sleeping Beauty transposon mutagenesis. Chemically induced chronic liver injury dramatically increased tumor penetrance and significantly altered driver mutation profiles, likely reflecting distinct selective pressures.

View Article and Find Full Text PDF
Article Synopsis
  • Existing anticancer approaches targeting integrins in tumor cells have seen limited effectiveness, prompting the exploration of methods to enhance integrin pathways that inhibit tumor growth.
  • A study created a model of metastatic prostate cancer where reducing the α3β1 integrin highlighted its role in signaling through Abl kinases, which limits harmful cell behaviors like migration and invasion.
  • The findings suggest that α3 integrin-deficient prostate cancers might benefit from new therapies focusing on the Hippo pathway, revealing complex tumor-suppressing roles for Abl kinases in prostate cancer that could clarify why certain treatments have not worked in clinical trials.
View Article and Find Full Text PDF

ECM1 overexpression is an independent predictor of poor prognosis in primary breast carcinomas, however the mechanisms by which ECM1 affects tumor progression have not been completely elucidated. ECM1 was silenced in the triple-negative breast cancer cell lines Hs578T and MDAMB231 using siRNA and the cells were evaluated for changes in morphology, migration, invasion and adhesion. Actin cytoskeleton alterations were evaluated by fluorescent staining and levels of activated Rho GTPases by pull down assays.

View Article and Find Full Text PDF

TAZ (WWTR1) and YAP are transcriptional coactivators and oncoproteins inhibited by the Hippo pathway. Herein we evaluate 159 sarcomas representing the most prevalent sarcoma types by immunohistochemistry for expression and activation (nuclear localization) of TAZ and YAP. We show that 50% of sarcomas demonstrate activation of YAP while 66% of sarcomas demonstrate activated TAZ.

View Article and Find Full Text PDF

Integrins function in collective migration both as major receptors for extracellular matrix and by crosstalk to adherens junctions. Despite extensive research, important questions remain about how integrin signaling mechanisms are integrated into collective migration programs. Tetraspanins form cell surface complexes with a subset of integrins and thus are good candidates for regulating the balance of integrin functional inputs into cell-matrix and cell-cell interactions.

View Article and Find Full Text PDF

Unlabelled: Significant evidence implicates α3β1 integrin in promoting breast cancer tumorigenesis and metastasis-associated cell behaviors in vitro and in vivo. However, the extent to which α3β1 is actually required for breast cancer metastasis remains to be determined. We used RNA interference to silence α3 integrin expression by approximately 70% in 4T1 murine mammary carcinoma cells, a model of aggressive, metastatic breast cancer.

View Article and Find Full Text PDF

Integrin α3β1 potently promotes cell motility on its ligands, laminin-332 and laminin-511, and this may help to explain why α3β1 has repeatedly been linked to breast carcinoma progression and metastasis. The pro-migratory functions of α3β1 depend strongly on lateral interactions with cell surface tetraspanin proteins. Tetraspanin CD151 interacts directly with the α3 integrin subunit and links α3β1 integrin to other tetraspanins, including CD9 and CD81.

View Article and Find Full Text PDF

Integrin α3β1 promotes tumor cell adhesion, migration, and invasion on laminin isoforms, and several clinical studies have indicated a correlation between increased tumoral α3β1 integrin expression and tumor progression, metastasis, and poor patient outcomes. However, several other clinical and experimental studies have suggested that α3β1 can possess anti-metastatic activity in certain settings. To help define the range of α3β1 functions in tumor cells in vivo, we used RNAi to silence the α3 integrin subunit in an aggressive, in vivo-passaged subline of PC-3 prostate carcinoma cells.

View Article and Find Full Text PDF

Dystroglycan (DG) is a cell surface receptor for extracellular matrix proteins and is involved in cell polarity, matrix organization, and mechanical stability of tissues. Previous studies documented loss of DG protein expression and glycosylation in a variety of cancer types, but the underlying mechanisms and the functional consequences with respect to cancer progression remain unclear. Here, we show that the level of expression of the βDG subunit as well as the glycosylation status of the αDG subunit inversely correlate with the Gleason scores of prostate cancers; furthermore, we show that the functional glycosylation of αDG is substantially reduced in prostate cancer metastases.

View Article and Find Full Text PDF

ErbB2+ human breast cancer is a major clinical problem. Prior results have suggested that tetraspanin CD151 might contribute to ErbB2-driven breast cancer growth, survival, and metastasis. In other cancer types, CD151 sometimes supports tumor growth and metastasis.

View Article and Find Full Text PDF

ALCAM, a member of the immunoglobulin superfamily, has been implicated in numerous developmental events and has been repeatedly identified as a marker for cancer metastasis. Previous studies addressing ALCAM's role in cancer have, however, yielded conflicting results. Depending on the tumor cell type, ALCAM expression has been reported to be both positively and negatively correlated with cancer progression and metastasis in the literature.

View Article and Find Full Text PDF

The basement membrane protein laminin-332 (laminin-5) mediates both stable cell adhesion and rapid cell migration and thus has the potential to either restrain or promote tumor cell metastasis. The major cellular receptors for laminin-332 are integrin α3β1, which mediates rapid tumor cell migration, and integrin α6β4, which often mediates stable cell attachment. Tetraspanin protein CD151 interacts directly with both α3β1 and α6β4 integrins and with other tetraspanins, thereby promoting α3β1 and α6β4 association with tetraspanin-enriched microdomains on the cell surface.

View Article and Find Full Text PDF

Metastasis involves the invasion of cancer cells across both the extracellular matrix and cellular barriers, and an evolving theme is that epithelial-to-mesenchymal transition (EMT) may mediate invasive cellular behavior. Previously, we isolated and analyzed a subpopulation of PC-3 prostate cancer cells, TEM4-18, and found that these cells both invaded an endothelial barrier more efficiently and exhibited enhanced metastatic colonization in vivo. Transendothelial migration of these cells depended on expression of ZEB1, a known regulator of EMT.

View Article and Find Full Text PDF