Publications by authors named "Stinstra J"

Implantable cardioverter defibrillators (ICDs) are commonly used to reduce the risk in patients with life-threatening arrhythmias, however, clinicians have little systematic guidance to place the device, especially in cases of unusual anatomy. We have previously developed a computational model that evaluates the efficacy of a delivered shock as a clinical and research aid to guide ICD placement on a patient specific basis. We report here on progress to validate this model with measured ICD surface potential maps from patients undergoing ICD implantation and testing for defibrillation threshold (DFT).

View Article and Find Full Text PDF

Identification of electrical activation or depolarization times on sparsely-sampled complex heart surfaces is of importance to clinicians and researchers in cardiac electrophysiology. We introduce a spatiotemporal approach for activation time estimation which combines prior results using spatial and temporal methods with our own progress on gradient estimation on triangulated surfaces. Results of the method applied to simulated and canine heart data suggest that improvements are possible using this novel combined approach.

View Article and Find Full Text PDF

Though implantable cardioverter defibrillators (ICDs) are increasing in use in both adults and children, little progress has been devoted to optimizing device and electrode placement. To facilitate effective ICD placement, especially in pediatric cases, we have developed a predictive model that evaluates the efficacy of a delivered shock. We have also developed an experimental validation approach based on measurements from clinical cases.

View Article and Find Full Text PDF

The electrocardiogram (ECG) is ubiquitously employed as a diagnostic and monitoring tool for patients experiencing cardiac distress and/or disease. It is widely known that changes in heart position resulting from, for example, posture of the patient (sitting, standing, lying) and respiration significantly affect the body-surface potentials; however, few studies have quantitatively and systematically evaluated the effects of heart displacement on the ECG. The goal of this study was to evaluate the impact of positional changes of the heart on the ECG in the specific clinical setting of myocardial ischemia.

View Article and Find Full Text PDF

Despite the growing use of implantable cardioverter defibrillators (ICDs) in adults and children, there has been little progress in optimizing device and electrode placement. To facilitate effective placement of ICDs, especially in pediatric cases, we have developed a predictive model that evaluates the efficacy of a delivered shock. Most recently, we have also developed an experimental validation approach based on measurements from clinical cases.

View Article and Find Full Text PDF

Although the survival rates of warfighters in recent conflicts are among the highest in military history, those who have sustained proximal limb amputations may present additional rehabilitation challenges. In some of these cases, traditional prosthetic limbs may not provide adequate function for service members returning to an active lifestyle. Osseointegration has emerged as an acknowledged treatment for those with limited residual limb length and those with skin issues associated with a socket together.

View Article and Find Full Text PDF

Vascular networks within a living organism are complex, multi-dimensional, and challenging to image capture. Radio-angiographic studies in live animals require a high level of infrastructure and technical investment in order to administer costly perfusion mediums whose signals metabolize and degrade relatively rapidly, diminishing within a few hours or days. Additionally, live animal specimens must not be subject to long duration scans, which can cause high levels of radiation exposure to the specimen, limiting the quality of images that can be captured.

View Article and Find Full Text PDF

Poor prosthetic fit is often the result of heterotopic ossification (HO), a frequent problem following blast injuries for returning service members. Osseointegration technology offers an advantage for individuals with significant HO and poor socket tolerance by using direct skeletal attachment of a prosthesis to the distal residual limb, but remains limited due to prolonged post-operative rehabilitation regimens. Therefore, electrical stimulation has been proposed as a catalyst for expediting skeletal attachment and the bioelectric effects of HO were evaluated using finite element analysis in 11 servicemen with transfemoral amputations.

View Article and Find Full Text PDF

Background: Total subcutaneous implantable subcutaneous defibrillators are in development, but optimal electrode configurations are not known.

Objective: We used image-based finite element models (FEM) to predict the myocardial electric field generated during defibrillation shocks (pseudo-DFT) in a wide variety of reported and innovative subcutaneous electrode positions to determine factors affecting optimal lead positions for subcutaneous implantable cardioverter-defibrillators (S-ICD).

Methods: An image-based FEM of an adult man was used to predict pseudo-DFTs across a wide range of technically feasible S-ICD electrode placements.

View Article and Find Full Text PDF

We introduce a 3D model of cardiac tissue to study at a microscopic level the relationship between tissue morphology and propagation of depolarization. Unlike the classical bidomain approach, in which tissue properties are described by the apparent conductivity of the tissue, in this "microdomain" approach, we included histology by modeling the actual shape of the intracellular and extracellular spaces that contain spatially distributed gap-junctions and membranes. The histological model of the tissue was generated by a computer algorithm that can be tuned to model different histological changes.

View Article and Find Full Text PDF

The projected number of American amputees is expected to rise to 3.6 million by 2050. Many of these individuals depend on artificial limbs to perform routine activities, but prosthetic suspensions using traditional socket technology can prove to be cumbersome and uncomfortable for a person with limb loss.

View Article and Find Full Text PDF

Many simulation studies in biomedicine are based on a similar sequence of processing steps, starting from images and running through geometric model generation, assignment of tissue properties, numerical simulation and visualization of the results--a process known as image-based geometric modelling and simulation. We present an overview of software systems for implementing such a sequence both within highly integrated problem-solving environments and in the form of loosely integrated pipelines. Loose integration in this case indicates that individual programs function largely independently but communicate through files of a common format and support simple scripting, so as to automate multiple executions wherever possible.

View Article and Find Full Text PDF

A method to estimate the potential and current density distribution during transcranial DC stimulation (tDCS) is introduced. The volume conductor model consists of a realistic head model (concerning shape as well as conductivity), obtained from TI-, PD- and DT-MR images. The model includes five compartments with different conductivities.

View Article and Find Full Text PDF

Electrocardiographic (ECG) ST segment shifts are often used as markers for detecting myocardial ischemia. Literature suggests that the progression of ischemia, occurs from the endocardium and spreads towards the epicardium, eventually becoming transmural. Our study with animal models has found the progression of ischemia, characterized by ST elevations to be more complex and heterogeneous in its distribution.

View Article and Find Full Text PDF

Implanted cardioverter/defribillator (ICD) implants may be complicated by body size and anatomy. One approach to this problem has been the adoption of creative, extracardiac implant strategies using standard ICD components. Because data on safety or efficacy of such ad hoc implant strategies are lacking, we have developed image-based finite element models to compare electric fields and expected defibrillation thresholds (DFTs) using standard and novel electrode locations.

View Article and Find Full Text PDF

This work presents a discrete multidomain model that describes ionic diffusion pathways between connected cells and within the interstitium. Unlike classical models of impulse propagation, the intracellular and extracellular spaces are represented as spatially distinct volumes with dynamic/static boundary conditions that electrically couple neighboring spaces. The model is used to investigate the impact of nonuniform geometrical and electrical properties of the interstitial space surrounding a fiber on conduction velocity and action potential waveshape.

View Article and Find Full Text PDF

Aim Of The Study: To evaluate influence of the skeletal muscle activity (SMA) on time and frequency domain properties of ECG during VF.

Materials And Methods: We studied the first 9min of electrically induced VF (N=7). We recorded Lead II ECG, 247 unipolar epicardial ventricular electrograms (UEGs) and 3 bipolar skeletal electromyograms (EMGs) near the positions of the ECG electrodes (sampling rate, 500Hz).

View Article and Find Full Text PDF

Background: Use of implantable cardiac defibrillators (ICDs) in children and patients with congenital heart disease is complicated by body size and anatomy. A variety of creative implantation techniques has been used empirically in these groups on an ad hoc basis.

Objective: To rationalize ICD placement in special populations, we used subject-specific, image-based finite element models (FEMs) to compare electric fields and expected defibrillation thresholds (DFTs) using standard and novel electrode configurations.

View Article and Find Full Text PDF

In this paper we evaluate different meshing schemes to solve for the bioelectric fields that arise in the human body due to the defibrillation shock generated by an Implantable Cardiac Defibrillator, with particular emphasis on implantation in children. For children, the question of relative performance of different electrode locations remains open. Computational simulation is a critical tool to address this question, and mesh design is a critical component of such simulations.

View Article and Find Full Text PDF

Computational modeling and simulation can provide important insights into the electrical and electrophysiological properties of cells, tissues, and organs. Commonly, the modeling is based on Maxwell's and Poisson's equations for electromagnetic and electric fields, respectively, and numerical techniques are applied for field calculation such as the finite element and finite differences methods. Focus of this work are finite element methods, which are based on an element-wise discretization of the spatial domain.

View Article and Find Full Text PDF

A model was developed of a bundle of cardiac fibers embedded in an extracellular space. In contrast to the classical bidomain approach, the model is constructed such that the intracellular and extracellular spaces are spatially distinct. The model was used to test the hypothesis that the distribution of the extracellular fluid in the tissue can affect the conduction velocity.

View Article and Find Full Text PDF

The dynamics of cardiac ischemia was investigated using experimental studies and computer simulations. An experimental model consisting of an isolated and perfused canine heart with full control over blood flow rate to a targeted coronary artery was used in the experimental study and a realistically shaped computer model of a canine heart, incorporating anisotropic conductivity and realistic fiber orientation, was used in the simulation study. The phenomena investigated were: (1) the influence of fiber rotation on the epicardial potentials during ischemia and (2) the effect of conductivity changes during a period of sustained ischemia.

View Article and Find Full Text PDF

In this paper we present a multi-scale approach for cardiac modeling. Based on the histology of cardiac tissue we created a geometrical model at a cellular scale to compute the effective conductivity of a piece of cardiac tissue. In turn, the conductivity values obtained from this cellular scale model were used in a whole heart model in which we simulated regional, subendocardial ischemia.

View Article and Find Full Text PDF

The results of a geometric model of cardiac tissue, used to compute the bidomain conductivity tensors during three phases of ischaemia, are described. Ischaemic conditions were simulated by model parameters being changed to match the morphological and electrical changes of three phases of ischaemia reported in literature. The simulated changes included collapse of the interstitial space, cell swelling and the closure of gap junctions.

View Article and Find Full Text PDF

In order to relate the structure of cardiac tissue to its passive electrical conductivity, we created a geometrical model of cardiac tissue on a cellular scale that encompassed myocytes, capillaries, and the interstitial space that surrounds them. A special mesh generator was developed for this model to create realistically shaped myocytes and interstitial space with a controlled degree of variation included in each model. In order to derive the effective conductivities, we used a finite element model to compute the currents flowing through the intracellular and extracellular space due to an externally applied electrical field.

View Article and Find Full Text PDF