Publications by authors named "Stinski M"

Article Synopsis
  • The text addresses a correction to an article published on page 1854 of volume 8, identified by the PubMed ID PMID: 29018427.
  • It implies that there were inaccuracies or necessary updates in that specific article.
  • This correction is important for ensuring the reliability and accuracy of the information presented in the original publication.
View Article and Find Full Text PDF

Stimulator of interferon genes (STING) is a critical signaling molecule in the innate immune response against DNA viruses by either directly sensing intracellular DNA or functioning as an adaptor molecule to activate the type I interferon (IFN) signaling pathway. We determined the functional interaction between STING and human cytomegalovirus (HCMV). A cDNA library containing 133 HCMV ORFs was screened to identify viral genes that inhibit STING-induced IFN-β promoter activation.

View Article and Find Full Text PDF

The genomes of HCMV clinical strains (e.g. FIX, TR, PH, etc) contain a 15 kb region that encodes 20 putative ORFs.

View Article and Find Full Text PDF

The history of the molecular biology of cytomegaloviruses from the purification of the virus and the viral DNA to the cloning and expression of the viral genes is reviewed. A key genetic element of cytomegalovirus (the CMV promoter) contributed to our understanding of eukaryotic cell molecular biology and to the development of lifesaving therapeutic proteins. The study of the molecular biology of cytomegaloviruses also contributed to the development of antivirals to control the viral infection.

View Article and Find Full Text PDF

Human cytomegalovirus protein IE2-p86 exerts its functions through interaction with other viral and cellular proteins. To further delineate its protein interaction network, we generated a recombinant virus expressing SG-tagged IE2-p86 and used tandem affinity purification coupled with mass spectrometry. A total of 9 viral proteins and 75 cellular proteins were found to associate with IE2-p86 protein during the first 48 hours of infection.

View Article and Find Full Text PDF

Expression of the human cytomegalovirus (HCMV) major immediate-early (MIE) genes is regulated by a strong enhancer-containing promoter with multiple binding sites for various transcription factors, including cyclic AMP response element binding protein 1 (CREB1). Here we show that overexpression of CREB1 potently blocked MIE transcription and HCMV replication. Surprisingly, CREB1 still exhibited strong inhibition of the MIE promoter when all five CREB binding sites within the enhancer were mutated, suggesting that CREB1 regulated the MIE gene expression indirectly.

View Article and Find Full Text PDF

Introduction: During productive infection, human cytomegalovirus (HCMV) genes are expressed in a temporal cascade, with temporal phases designated as immediate-early (IE), early, and late. The major IE (MIE) genes, UL123 and UL122 (IE1/IE2), play a critical role in subsequent viral gene expression and the efficiency of viral replication. The early viral genes encode proteins necessary for viral DNA replication.

View Article and Find Full Text PDF

The regulation of human cytomegalovirus (HCMV) late gene expression by viral proteins is poorly understood, and these viral proteins could be targets for novel antivirals. HCMV open reading frames (ORFs) UL79, -87, and -95 encode proteins with homology to late gene transcription factors of murine gammaherpesvirus 68 ORFs 18, 24, and 34, respectively. To determine whether these HCMV proteins are also essential for late gene transcription of a betaherpesvirus, we mutated HCMV ORFs UL79, -87, and -95.

View Article and Find Full Text PDF

The major immediate-early (MIE) gene locus of human cytomegalovirus (HCMV) is the master switch that determines the outcomes of both lytic and latent infections. Here, we provide evidence that alteration in the splicing of HCMV (Towne strain) MIE genes affects infectious-virus replication, movement through the cell cycle, and cyclin-dependent kinase activity. Mutation of a conserved 24-nucleotide region in MIE exon 4 increased the abundance of IE1-p38 mRNA and decreased the abundance of IE1-p72 and IE2-p86 mRNAs.

View Article and Find Full Text PDF

Background: Human cytomegalovirus (HCMV) can be reactivated under immunosuppressive conditions causing several fatal pneumonitis, hepatitis, retinitis, and gastrointestinal diseases. HCMV also causes deafness and mental retardation in neonates when primary infection has occurred during pregnancy. In the genome of HCMV at least 194 known open reading frames (ORFs) have been predicted, and approximately one-quarter, or 41 ORFs, are required for viral replication in cell culture.

View Article and Find Full Text PDF

Unlabelled: Human cytomegalovirus (HCMV) or its immediate-early IE86 protein alone induces cell cycle in quiescent primary human foreskin fibroblasts (HFFs), but blocks its progression at the G1/S interphase and inhibits cellular DNA synthesis by a mechanism that is not clearly understood. It is assumed that, in this phenomenon, the binding of minichromosome maintenance (Mcm) proteins to replication origins is blocked. In this work, we analyzed the initiation of DNA replication in HCMV-permissive U373MG cells and used oriP of Epstein-Barr virus (EBV) as a simplified model of a cellular replication origin.

View Article and Find Full Text PDF

One of the two SP1 sites in the proximal enhancer of the human cytomegalovirus (HCMV) major immediate-early (MIE) promoter is essential for transcription in human fibroblast cells (H. Isomura, M. F.

View Article and Find Full Text PDF

The IE86 protein of human cytomegalovirus (HCMV) is unique among viral and cellular proteins because it negatively autoregulates its own expression, activates the viral early and late promoters, and both activates and inhibits cellular promoters. It promotes cell cycle progression from Go/G1 to G1/S and arrests cell cycle progression at the G1/S interface or at G2/M. The IE86 protein is essential because it creates a cellular environment favorable for viral replication.

View Article and Find Full Text PDF

The cytomegalovirus (CMV) major immediate early (MIE) enhancer-containing promoter regulates the expression of the downstream MIE genes, which have critical roles in reactivation from latency and acute infection. The enhancer consists of binding sites for cellular transcription factors that are repeated multiple times. The primate and nonprimate CMV enhancers can substitute for one another.

View Article and Find Full Text PDF

During productive infection, human cytomegalovirus (HCMV) UL44 transcription initiates at three distinct start sites that are differentially regulated. Two of the start sites, the distal and the proximal, are active at early times, whereas the middle start site is active only at late times after infection. The UL44 early viral gene product is essential for viral DNA synthesis.

View Article and Find Full Text PDF

The promoter of the major immediate-early (MIE) genes of human cytomegalovirus (HCMV), also referred to as the CMV promoter, possesses a cis-acting element positioned downstream of the TATA box between positions -14 and -1 relative to the transcription start site (+1). We determined the role of the cis-acting element in viral replication by comparing recombinant viruses with the cis-acting element replaced with other sequences. Recombinant virus with the simian CMV counterpart replicated efficiently in human foreskin fibroblasts, as well as wild-type virus.

View Article and Find Full Text PDF

The IE2p86 protein of human cytomegalovirus is an essential activator of early- and late-phase viral gene expression. Whilst IE2p86 activates expression of a number of cellular genes, it also represses certain cellular genes, particularly those activated by nuclear factor kappaB (NF-kappaB). As the interleukin-6 (IL-6) promoter can be activated by both NF-kappaB and IE2p86, it was examined whether there is competition between these two factors.

View Article and Find Full Text PDF

An AT-rich region of the human cytomegalovirus (CMV) genome between the UL127 open reading frame and the major immediate-early (MIE) enhancer is referred to as the unique region (UR). It has been shown that the UR represses activation of transcription from the UL127 promoter and functions as a boundary between the divergent UL127 and MIE genes during human CMV infection [Angulo, A., Kerry, D.

View Article and Find Full Text PDF

Transcription of the DNA polymerase processivity factor gene (UL44) of human cytomegalovirus initiates at three distinct start sites, which are differentially regulated during productive infection. Two of these start sites, the distal and proximal sites, are active at early times, and the middle start site is active at only late times after infection (F. Leach and E.

View Article and Find Full Text PDF

The functions of the human cytomegalovirus (HCMV) IE86 protein are paradoxical, as it can both activate and repress viral gene expression through interaction with the promoter region. Although the mechanism for these functions is not clearly defined, it appears that a combination of direct DNA binding and protein-protein interactions is involved. Multiple sequence alignment of several HCMV IE86 homologs reveals that the amino acids (534)LPIYE(538) are conserved between all primate and nonprimate CMVs.

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) reactivation from latency causes disease in individuals who are immunocompromised or immunosuppressed. Activation of the major immediate-early (MIE) promoter is thought to be an initial step for reactivation. We determined whether expression of the MIE gene products in trans was sufficient to circumvent an HCMV latent-like state in an undifferentiated transformed human promonocytic (THP)-1 cell model system.

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) expresses several proteins that manipulate normal cellular functions, including cellular transcription, apoptosis, immune response, and cell cycle control. The IE2 gene, which is expressed from the HCMV major immediate-early (MIE) promoter, encodes the IE86 protein. IE86 is a multifunctional protein that is essential for viral replication.

View Article and Find Full Text PDF

We previously demonstrated that the major immediate early (MIE) proximal enhancer containing one GC box and the TATA box containing promoter are minimal elements required for transcription and viral replication in human fibroblast cells (H. Isomura, T. Tsurumi, M.

View Article and Find Full Text PDF