Fibrotic diseases, such as idiopathic pulmonary fibrosis (IPF) and systemic scleroderma (SSc), are commonly associated with high morbidity and mortality, thereby representing a significant unmet medical need. Interleukin 11 (IL11)-mediated cell activation has been identified as a central mechanism for promoting fibrosis downstream of TGFβ. IL11 signaling has recently been reported to promote fibroblast-to-myofibroblast transition, thus leading to various pro-fibrotic phenotypic changes.
View Article and Find Full Text PDFApproaches for antibody discovery have seen substantial improvement and success in recent years. Yet, advancing antibodies into the clinic remains difficult because therapeutic developability concerns are challenging to predict. We developed a computational model to simplify antibody developability assessment and enable accelerated early-stage screening.
View Article and Find Full Text PDFRapidly emerging SARS-CoV-2 variants jeopardize antibody-based countermeasures. Although cell culture experiments have demonstrated a loss of potency of several anti-spike neutralizing antibodies against variant strains of SARS-CoV-2, the in vivo importance of these results remains uncertain. Here we report the in vitro and in vivo activity of a panel of monoclonal antibodies (mAbs), which correspond to many in advanced clinical development by Vir Biotechnology, AbbVie, AstraZeneca, Regeneron and Lilly, against SARS-CoV-2 variant viruses.
View Article and Find Full Text PDFRapidly-emerging variants jeopardize antibody-based countermeasures against SARS-CoV-2. While recent cell culture experiments have demonstrated loss of potency of several anti-spike neutralizing antibodies against SARS-CoV-2 variant strains1-3, the in vivo significance of these results remains uncertain. Here, using a panel of monoclonal antibodies (mAbs) corresponding to many in advanced clinical development by Vir Biotechnology, AbbVie, AstraZeneca, Regeneron, and Lilly we report the impact on protection in animals against authentic SARS-CoV-2 variants including WA1/2020 strains, a B.
View Article and Find Full Text PDFVision (Basel)
April 2019
Geometric differences between the images seen by each eye enable the perception of depth. Additionally, depth is produced in the absence of geometric disparities with binocular disparities in either the average luminance or contrast, which is known as the Venetian blind effect. The temporal dynamics of the Venetian blind effect are much slower (1.
View Article and Find Full Text PDFWhen one views a square-wave grating and dichoptically changes the average luminance or contrast of the monocular images, at least three perceptual phenomena might occur. These are the Venetian blind effect, or a perceived rotation of the bars around individual vertical axes; binocular luster, or a perceived shimmering; and binocular rivalry, or an alternating perception between the views of the two eyes. Perception of luster and rivalry occur when the "light bars" in the grating dichoptically straddle the background luminance (one eye's image has a higher luminance than the background and the other eye's image has a lower luminance than the background), with little impact from the "dark bars.
View Article and Find Full Text PDFDownstream purification of therapeutic antibodies requires candidates to be stable under various stress conditions, such as low pH. Current approaches to assess the conformational or colloidal stability of biologics may require significant amounts of material, and the testing may occur over an extended period of time. Furthermore, typical methodologies for early stability testing often do not directly address low pH stability, but focus more on conditions suitable for long-term drug product storage.
View Article and Find Full Text PDFMünster, the first to discover the effects of a luminance disparity on perceived depth, described two: (1) The apparent displacement in depth of one of a pair of objects relative to the other when viewed with a luminance disparity, and (2) The apparent overall displacement of objects viewed with a luminance disparity away from the observer. The first, which is the Venetian blind effect, was ascribed to irradiation. Current evidence suggests that irradiation fails to account for the effect, implying that neural mechanisms are involved.
View Article and Find Full Text PDFClear and accurate understanding of diversity in antibody complementarity-determining regions (CDRs) is critical for antibody discovery and engineering. Previous observations of antibody CDR-H3 diversity were based on analyzing available antibody sequences in the public databases. The results may not accurately reflect that of natural antibody repertoire due to erroneous species annotation and the presence of man-made CDR loop diversity in public antibody sequence databases.
View Article and Find Full Text PDFMethods Mol Biol
August 2013
Development of a thorough understanding of the solution polydispersity of therapeutic glycoproteins including monoclonal antibodies is an important and challenging undertaking. Degradation pathways involving fragmentation could result in loss of therapeutic efficacy. Protein aggregation on the other hand is frequently considered a critical quality attribute, and concerns exist that protein aggregates could result in undesirable immunological consequences (1).
View Article and Find Full Text PDFTherapeutic proteins circulating in blood are in a highly crowded, redox environment at high temperatures of ~37°C. These molecules circulate in the presence of enzymes and other serum proteins making it difficult to predict from in vitro studies the stability, aggregation or pharmacokinetics of a therapeutic protein in vivo. Here, we describe use of a high throughput capillary electrophoresis based microfluidic device (LabChip GXII) to obtain pharmacokinetics (PK) of a fluorescently labeled human mAb directly from serum.
View Article and Find Full Text PDFBackground: The form(s) of amyloid-β peptide (Aβ) associated with the pathology characteristic of Alzheimer's disease (AD) remains unclear. In particular, the neurotoxicity of intraneuronal Aβ accumulation is an issue of considerable controversy; even the existence of Aβ deposits within neurons has recently been challenged by Winton and co-workers. These authors purport that it is actually intraneuronal APP that is being detected by antibodies thought to be specific for Aβ.
View Article and Find Full Text PDFWhen square wave gratings are viewed binocularly with lower luminance or contrast in one eye, the individual bars of the grating appear to rotate around a vertical axis (Venetian blind effect). The effect has typically been thought to occur due to retinal disparities that result from irradiation and, therefore, are entirely entoptic. If so, the visual system should process disparities from a luminance or contrast disparity and a geometric disparity at the same rate.
View Article and Find Full Text PDFWhen a rectangular wave grating is binocularly viewed with a neutral density filter over one eye, an illusory rotation resembling that of a partially opened Venetian blind is perceived (Cibis and Haber, 1951). Using a binary classification task, in the first experiment, the probability of perceiving a rotation in a given direction was measured as a function of a factorial combination of inter-ocular contrast (see Note 1) and luminance ratios. The probability of a rotation in a given direction decreased monotonically with the luminance of the brighter bars when the grating contains a less than unity contrast.
View Article and Find Full Text PDFSeeing Perceiving
December 2011
While most of the work on stereopsis focuses on geometric disparities, humans also respond to intensity (contrast or luminance) disparities in the absence of geometric disparities. A rectangular-wave grating viewed with an intensity disparity engenders two perceptions: a perceived intensity, and a perceived rotation of the individual bars of the grating (the Venetian blind effect). Measuring perceived intensity and perceived rotation in gratings with intensity disparities, we found that the two degrees of freedom from the intensities presented to each eye are conserved in the form of two perceptions: perceived intensity is related to the sum of the grating intensities and perceived rotation is related to the difference.
View Article and Find Full Text PDFThis chapter outlines protocols that produce homogenous preparations of oligomeric and fibrillar amyloid-β peptide (Aβ). While there are several isoforms of this peptide, the 42 amino acid form is the focus because of its genetic and pathological link to Alzheimer's disease (AD). Past decades of AD research highlight the dependence of Aβ42 function on its structural assembly state.
View Article and Find Full Text PDFUltrasonic vocalizations (USVs) have been observed in a number of rodent species. They occur under a variety of conditions, including aversive and stressful experiences. In the current study, we recorded USVs emitted by rats exposed to intermittent cold water swim (ICWS) stress and subsequently evaluated their performance in an instrumental swim escape test (SET).
View Article and Find Full Text PDFAmyloid-beta (Abeta) is causally implicated in Alzheimer's disease and neuroplasticity failure has acquired validity as a possible mechanism of early AD pathogenesis. We have previously demonstrated that oligomeric Abeta(1-42) inhibits LTP in the dentate gyrus of rat hippocampal slices. We now show, using whole cell recordings in hippocampal granule cells, that oligomeric Abeta(1-42) decreases neuronal excitability.
View Article and Find Full Text PDFRecent studies have shown that the lipidation and assembly state of apolipoprotein E (apoE) determine receptor recognition and amyloid-beta peptide (Abeta) binding. We previously demonstrated that apoE secreted by HEK cells stably expressing apoE3 or apoE4 (HEK-apoE) binds Abeta and inhibits Abeta-induced neurotoxicity by an isoform-specific process that requires apoE receptors. Here we characterized the structure of HEK-apoE assemblies and determined their receptor binding specificity.
View Article and Find Full Text PDFExtracellular fibrillar amyloid deposits are prominent and universal Alzheimer's disease (AD) features, but senile plaque abundance does not always correlate directly with the degree of dementia exhibited by AD patients. The mechanism(s) and dynamics of Abeta fibril genesis and deposition remain obscure. Enhanced Abeta synthesis rates coupled with decreased degradative enzyme production and accumulating physical modifications that dampen proteolysis may all enhance amyloid deposit formation.
View Article and Find Full Text PDFIn the AD brain, there are elevated amounts of soluble and insoluble Abeta peptides which enhance the expression of membrane bound and soluble receptor for advanced glycation end products (RAGE). The binding of soluble Abeta to soluble RAGE inhibits further aggregation of Abeta peptides, while membrane bound RAGE-Abeta interactions elicit activation of the NF-kappaB transcription factor promoting sustained chronic neuroinflammation. Atomic force microscopy observations demonstrated that the N-terminal domain of RAGE, by interacting with Abeta, is a powerful inhibitor of Abeta polymerization even at prolonged periods of incubation.
View Article and Find Full Text PDFAmyloid-beta1-42 (Abeta1-42) is crucial to Alzheimer disease (AD) pathogenesis but the conformation of the toxic Abeta species remains uncertain. AD risk is increased by apolipoprotein E4 (apoE4) and decreased by apoE2 compared with the apoE3 isoform, but whether inheritance of apoE4 represents a gain of negative or a loss of protective function is also unresolved. Using hippocampal slices from apoE knockout (apoE-KO) and human apoE2, E3, and E4 targeted replacement (apoE-TR) mice, we found that oligomeric Abeta1-42 inhibited long-term potentiation (LTP) with a hierarchy of susceptibility mirroring clinical AD risk (apoE4-TR > apoE3-TR = apoE-KO > apoE2-TR), and that comparable doses of unaggregated Abeta1-42 did not affect LTP.
View Article and Find Full Text PDFAbnormalities in the processing of amyloid precursor protein to amyloid-beta (Abeta) are causal factors, and the presence of the epsilon4 allele of apolipoprotein E (apoE) is the primary risk factor for Alzheimer's disease (AD). Based, at least in part, on these genetics, the potential structural and functional interactions between these two proteins are the focus of our research. To understand the nature of the physical interactions between apoE and Abeta, we initially utilized gel-shift assays to demonstrate that native apoE2 and E3 (associated with lipid particles) form an SDS-stable complex with Abeta that is more abundant than the apoE4:Abeta complex.
View Article and Find Full Text PDFPioneering work in the 1950s by Christian Anfinsen on the folding of ribonuclease has shown that the primary structure of a protein "encodes" all of the information necessary for a nascent polypeptide to fold into its native, physiologically active, three-dimensional conformation (for his classic review, see [Science 181 (1973) 223]). In Alzheimer's disease (AD), the amyloid beta-protein (Abeta) appears to play a seminal role in neuronal injury and death. Recent data have suggested that the proximate effectors of neurotoxicity are oligomeric Abeta assemblies.
View Article and Find Full Text PDFExtensive research causally links amyloid-beta peptide (A beta) to Alzheimer's disease, although the pathologically relevant A beta conformation remains unclear. A beta spontaneously aggregates into the fibrils that deposit in senile plaques. However, recent in vivo and in vitro reports describe a potent biological activity for oligomeric assemblies of A beta.
View Article and Find Full Text PDF