Publications by authors named "Stine K Morthorst"

The kinesin-3 motor KIF13B functions in endocytosis, vesicle transport and regulation of ciliary length and signaling. Direct binding of the membrane-associated guanylate kinase (MAGUK) DLG1 to the MAGUK-binding stalk domain of KIF13B relieves motor autoinhibition and promotes microtubule plus-end-directed cargo transport. Here, we characterize angiomotin (AMOT) isoform 2 (p80, referred to as Ap80) as a novel KIF13B interactor that promotes binding of another MAGUK, the polarity protein and Crumbs complex component PALS1, to KIF13B.

View Article and Find Full Text PDF

Recent evidence has indicated that caveolins are localized at the base of primary cilia, which are microtubule-based sensory organelles present on the cell surface, and that Caveolin-1 (CAV1) plays important roles in regulating ciliary membrane composition and function. Here we describe methods to analyze the localization and function of CAV1 in primary cilia of cultured mammalian cells. These include methods for culturing and transfecting mammalian cells with a CAV1-encoding plasmid or small interfering RNA (siRNA), analysis of mammalian cells by immunofluorescence microscopy (IFM) with antibodies against ciliary markers and CAV1, as well as methods for analyzing ciliary CAV1 function in siRNA-treated cells by IFM and cell-based signaling assays.

View Article and Find Full Text PDF

Primary cilia are antenna-like sensory organelles that regulate a substantial number of cellular signalling pathways in vertebrates, both during embryonic development as well as in adulthood, and mutations in genes coding for ciliary proteins are causative of an expanding group of pleiotropic diseases known as ciliopathies. Cilia consist of a microtubule-based axoneme core, which is subtended by a basal body and covered by a bilayer lipid membrane of unique protein and lipid composition. Cilia are dynamic organelles, and the ability of cells to regulate ciliary protein and lipid content in response to specific cellular and environmental cues is crucial for balancing ciliary signalling output.

View Article and Find Full Text PDF

Ciliary membrane composition is controlled by transition zone (TZ) proteins such as RPGRIP1, RPGRIPL and NPHP4, which are vital for balanced coordination of diverse signalling systems like the Sonic hedgehog (Shh) pathway. Activation of this pathway involves Shh-induced ciliary accumulation of Smoothened (SMO), which is disrupted by disease-causing mutations in TZ components. Here we identify kinesin-3 motor protein KIF13B as a novel member of the RPGRIP1N-C2 domain-containing protein family and show that KIF13B regulates TZ membrane composition and ciliary SMO accumulation.

View Article and Find Full Text PDF

Since the beginning of the millennium, research in primary cilia has revolutionized our way of understanding how cells integrate and organize diverse signaling pathways during vertebrate development and in tissue homeostasis. Primary cilia are unique sensory organelles that detect changes in their extracellular environment and integrate and transmit signaling information to the cell to regulate various cellular, developmental, and physiological processes. Many different signaling pathways have now been shown to rely on primary cilia to function properly, and mutations that lead to ciliary dysfunction are at the root of a pleiotropic group of diseases and syndromic disorders called ciliopathies.

View Article and Find Full Text PDF

A growing number of studies have used new generation technologies to characterize the protein constituents of cilia and centrosomes. This has led to the identification of a vast number of candidate ciliary or centrosomal proteins, whose subcellular localization needs to be investigated and validated. Here, we describe a simple and inexpensive method for analyzing the subcellular localization of candidate cilium- or centrosome-associated proteins, and we illustrate the utility as well as the pitfalls of this method by applying it to a group of ASH (ASPM, SPD-2, Hydin) domain-containing proteins, previously predicted to be cilia- or centrosome-associated proteins based on bioinformatic analyses.

View Article and Find Full Text PDF

Initially identified in DNA damage repair, ATM-interactor (ATMIN) further functions as a transcriptional regulator of lung morphogenesis. Here we analyse three mouse mutants, Atmin(gpg6/gpg6), Atmin(H210Q/H210Q) and Dynll1(GT/GT), revealing how ATMIN and its transcriptional target dynein light chain LC8-type 1 (DYNLL1) are required for normal lung morphogenesis and ciliogenesis. Expression screening of ciliogenic genes confirmed Dynll1 to be controlled by ATMIN and further revealed moderately altered expression of known intraflagellar transport (IFT) protein-encoding loci in Atmin mutant embryos.

View Article and Find Full Text PDF

Background: Assembly of primary cilia relies on vesicular trafficking towards the cilium base and intraflagellar transport (IFT) between the base and distal tip of the cilium. Recent studies have identified several key regulators of these processes, including Rab GTPases such as Rab8 and Rab11, the Rab8 guanine nucleotide exchange factor Rabin8, and the transport protein particle (TRAPP) components TRAPPC3, -C9, and -C10, which physically interact with each other and function together with Bardet Biedl syndrome (BBS) proteins in ciliary membrane biogenesis. However, despite recent advances, the exact molecular mechanisms by which these proteins interact and target to the basal body to promote ciliogenesis are not fully understood.

View Article and Find Full Text PDF