Bacterial membrane vesicle (BMV) nanoparticles are secreted naturally by bacteria throughout their lifecycle and are a rich source of biomarkers from the parent bacteria, but they are currently underutilized for clinical diagnostic applications, such as pathogen identification, due to the time-consuming and low-yield nature of traditional recovery methods required for analysis. The recovery of BMVs is particularly difficult from complex biological fluids. Here, we demonstrate a recovery method that uses dielectrophoretic (DEP) forces generated on electrokinetic microfluidic chips to isolate and analyze BMVs from human plasma.
View Article and Find Full Text PDFJASA Express Lett
November 2023
The acoustic black hole (ABH) effect has been shown to increase damping of structures by focusing energy into a tapered-thickness region with added damping material. This paper illustrates that enhanced damping can be achieved without the use of damping material. Three panels were designed with different ABH grid patterns and parameters and compared to a baseline panel.
View Article and Find Full Text PDFDielectrophoresis (DEP) is a successful method to recover nanoparticles from different types of fluid. The DEP force acting on these particles is created by an electrode microarray that produces a nonuniform electric field. To apply DEP to a highly conducting biological fluid, a protective hydrogel coating over the metal electrodes is required to create a barrier between the electrode and the fluid.
View Article and Find Full Text PDFBackground: There is a small, but significant cohort of patients that receives inappropriate care, in the wrong setting, and that utilises a disproportionate amount of healthcare resources. People with multiple co-morbidities and often-undetected mental illness fare better with integrated care and case management approaches.
Setting: In North West London, we have been working in the 'Integrated Care Programme' for four years to try to improve the care this cohort receives.
Spine (Phila Pa 1976)
December 2007
Study Design: Retrospective case series.
Objective: To present results of recombinant human bone morphogenetic protein-2 (rhBMP-2) use in medically nonresponsive pyogenic vertebral osteomyelitis (PVO), treated by anterior/posterior debridement and instrumented fusion in the cervical, thoracic, and lumbosacral spine.
Summary Of Background Data: Surgical options for PVO vary, as do their outcomes, and can be complicated by recurrence, pseudarthrosis, and death.
The amygdala exhibits significant pathological changes in Parkinson's disease, including atrophy and Lewy body (LB) formation. Amygdala pathology has been suggested to contribute to some clinical features of Parkinson's disease, including deficits of olfaction and facial expression. The degree of neuronal loss in amygdala subnuclei and the relationship with LB formation in non-demented Parkinson's disease cases have not been examined previously.
View Article and Find Full Text PDFThe transition from the partially folded soluble Abeta monomer to insoluble Abeta amyloidfibrils is seminal to the formation and growth of amyloid plaques in Alzheimer's disease (AD). A detailed understanding of the role of AD risk factors in these processes is essential to understanding the physiochemical nature of this conformational rearrangement. The apolipoprotein E epsilon4 allele, a risk factor for AD, affects AD pathology by increasing amyloid burden relative to the much more common epsilon3 allele.
View Article and Find Full Text PDFThe pathological hallmark of Alzheimer's disease (AD) is accumulation in the brain of amyloid composed of the 40-mer peptide A beta. Many fundamental questions about the biology of (AD) remain unanswered because there is currently no method of quantifying A beta amyloid in vivo. A noninvasive method of detecting and quantifying A beta amyloid in vivo would have wide application for the premortem diagnosis of AD and the efficient evaluation of candidate therapeutics aimed at inhibiting the formation and growth of A beta amyloid.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
January 2002
A novel method for analysing polysaccharide materials is described which employs size-exclusion chromatography (SEC) followed by detection by on-line electrospray ionisation mass spectrometry (ESI-MS) and off-line matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS). It is demonstrated through SEC/ESI ion trap mass spectrometry that the formation of multiply charged oligomer ions, which bind up to five sodium cations, allows the rapid analysis of polysaccharide ions with molecular weights in excess of 9 kDa. MALDI spectra generated from fractionation of the effluent collected from the same SEC separation are shown to be in good agreement with the ESI spectra with respect to molecular weight distributions and types of ions generated.
View Article and Find Full Text PDFThe assembly of the beta-amyloid peptide (Abeta) into amyloid fibrils is essential to the pathogenesis of Alzheimer's disease. Detailed structural information about fibrillogenesis has remained elusive due to the highly insoluble, noncrystalline nature of the assembled peptide. X-ray fiber diffraction, infrared spectroscopy, and solid-state NMR studies performed on fibrils composed of Abeta peptides have led to conflicting models of the intermolecular alignment of beta-strands.
View Article and Find Full Text PDFPseudomonas cellulosa is an aerobic bacterium that synthesizes an extensive array of modular cellulases and hemicellulases, which have a modular architecture consisting of catalytic domains and distinct non-catalytic carbohydrate-binding modules (CBMs). To investigate whether the main-chain-cleaving pectinases from this bacterium also have a modular structure, a library of P. cellulosa genomic DNA, constructed in lambdaZAPII, was screened for pectinase-encoding sequences.
View Article and Find Full Text PDFBrain amyloid composed of the approximately 40-amino-acid human beta-amyloid peptide A beta is integral to Alzheimer's disease pathology. To probe the importance of a conformational transition in Abeta during amyloid growth, we synthesized and examined the solution conformation and amyloid deposition activity of A beta congeners designed to have similar solution structures but to vary substantially in their barriers to conformational transition. Although all these peptides adopt similar solution conformations, a covalently restricted Abeta congener designed to have a very high barrier to conformational rearrangement was inactive, while a peptide designed to have a reduced barrier to conformational transition displayed an enhanced deposition rate relative to wild-type A beta.
View Article and Find Full Text PDFThe self-assembly of the soluble peptide Abeta into Alzheimer's disease amyloid is believed to involve a conformational change. Hence the solution conformation of Abeta is of significant interest. In contrast to studies in other solvents, in water Abeta is collapsed into a compact series of loops, strands, and turns and has no alpha-helical or beta-sheet structure.
View Article and Find Full Text PDFA three-year-old, male neutered domestic longhair cat was referred for evaluation of icterus, vomiting, and anorexia. Abdominal ultrasonography revealed a proximal duodenal mass obstructing the common bile duct. The mass was surgically resected, and a cholecystoduodenostomy was performed.
View Article and Find Full Text PDFAmyloid plaques composed of the peptide Abeta are an integral part of Alzheimer's disease (AD) pathogenesis. We have modeled the process of amyloid plaque growth by monitoring the deposition of soluble Abeta onto amyloid in AD brain tissue or synthetic amyloid fibrils and show that it is mediated by two distinct kinetic processes. In the first phase, "dock", Abeta addition to the amyloid template is fully reversible (dissociation t(1/2) approximately 10 min), while in the second phase, "lock", the deposited peptide becomes irreversibly associated (dissociation t(1/2) >> 1000 min) with the template in a time-dependent manner.
View Article and Find Full Text PDFSenile plaques composed of the peptide Abeta contribute to the pathogenesis of Alzheimer's disease (AD), and mechanisms underlying their formation and growth may be exploitable as therapeutic targets. To examine the process of amyloid plaque growth in human brain, we have utilized size exclusion chromatography (SEC), translational diffusion measured by NMR, and in vitro models of Abeta amyloid growth to identify the oligomerization state of Abeta that is competent to add onto an existing amyloid deposit. SEC of radiolabeled and unlabeled Abeta over a concentration range of 10(-)(10)-10(-)(4) M demonstrated that the freshly dissolved peptide eluted as a single low molecular weight species, consistent with monomer or dimer.
View Article and Find Full Text PDFThe murine prion protein PrP gene encodes a protein of 254 amino acids with two consensus sites for Asn-linked glycosylation at codons 180 and 196. A partial site-specific study of the N-linked glycans from hamster PrP has previously been carried out by mass spectrometry [Stahl, N., Baldwin, M.
View Article and Find Full Text PDFThe formation and growth of insoluble amyloid deposits composed primarily of the human beta-amyloid peptide (A beta) in brain is an essentially invariant feature of Alzheimer's disease (AD) and is widely believed to contribute to the progressive neurodegeneration of the disorder. To probe the specificity of amyloid formation and growth, we synthesized and examined the self-assembly of D- and L-stereoisomers of A beta in vitro. While both enantiomers formed insoluble aggregates at similar rates with amyloid-like fibrillar morphology, deposition of soluble A beta peptide onto preexisting A beta aggregates was stereospecific.
View Article and Find Full Text PDFThe analytical characteristics of infrared (IR) matrix-assisted laser desorption and ionization (MALDI) were investigated for the analysis of phosphopeptides, a phosphopolypeptide, and glycopeptides. Two commercially available instruments, a high-resolution delayed extraction (DE) reflectron time-of-flight (RETOF) mass spectrometer and a high-power pulsed Er:YAG laser, were interfaced to produce a high-resolution MALDI-DE-RETOF instrument that is easy to use and can be switched between UV- and IR-MALDI mode within seconds. In the interface design, particular attention was paid to maintaining the same professional operating environment for the new IR-MALDI mode as exists for the commercial UV-MALDI mode.
View Article and Find Full Text PDFAmyloid beta-proteins (A beta) are proteolytic fragments of the beta-amyloid precursor protein (beta APP) that are secreted by mammalian cells throughout life but also accumulate progressively as insoluble cerebral aggregates in Alzheimer's disease (AD). Because mounting evidence indicates that A beta aggregation and deposition are early, critical features of AD leading to neurotoxicity, many studies of A beta aggregation have been conducted using synthetic peptides under generally nonphysiological conditions and concentrations. We recently described the oligomerization of A beta peptides secreted by beta APP-expressing cells at low nanomolar (20-30 ng/mL) levels into sodium dodecyl sulfate- (SDS-) stable oligomers of 6-16 kDa.
View Article and Find Full Text PDFBenzoylphenylalanine, a photoreactive phenylalanine analog that can be incorporated into a peptide during solid-phase synthesis, is a useful probe for investigating the interactions of bioactive peptides with their receptors. This probe, however, lacks versatility because it is not detectable by Edman sequencing and because it cannot be labeled with radioiodine, requiring radiolabeling of the peptide ligand at a site distal to the photoreactive amino acid. The separation of the radioisotope and photoaffinity labels along the primary sequence limits identification of the photoinsertion site to a peptide fragment rather than a specific amino acid of the receptor protein.
View Article and Find Full Text PDFThe formation, growth, and maturation of brain amyloid "senile" plaques are essential pathological processes in Alzheimer's disease (AD) and key targets for therapeutic intervention. The process of in vitro deposition of A beta at physiological concentrations onto plaques in AD brain preparations has been well characterized, but is cumbersome for drug discovery. We describe here a high-through put screen for inhibitors of A beta deposition onto a synthetic template (synthaloid) of fibrillar A beta immobilized in a polymer matrix.
View Article and Find Full Text PDFThe amyloid beta-peptide (Abeta) is the major constituent of neuritic plaques in Alzheimer's disease and occurs as a soluble 40-42-residue peptide in cerebrospinal fluid and blood of both normal and AD subjects. It is unclear whether Abeta, once it is secreted by cells, remains free in biological fluids or is associated with other proteins and thus transported and metabolized with them. Such knowledge of the normal fate of Abeta is a prerequisite for understanding the changes that may lead to the pathological aggregation of soluble Abeta in vivo, the possible influence of certain extracellular proteins, particularly apolipoprotein E, on plaque formation, and the pharmacology of putative Abeta-lowering drugs.
View Article and Find Full Text PDFAlzheimer's disease (AD) is pathologically characterized by the presence of numerous insoluble amyloid plaques in the brain composed primarily of a 40-43 amino acid peptide, the human beta-amyloid peptide (A beta). The process of A beta deposition can be modeled in vitro by deposition of physiological concentrations of radiolabeled A beta onto preexisting amyloid in preparations of unfixed AD cerebral cortex. Using this model system, it has been shown that A beta deposition is biochemically distinct from A beta aggregation and occurs readily at physiological A beta concentrations, but which regions and conformations of A beta are essential to A beta deposition is poorly understood.
View Article and Find Full Text PDF