Injury to one cerebral hemisphere can result in paresis of the contralesional hand and subsequent preference of the ipsilesional hand in daily activities. However, forced use therapy in humans can improve function of the contralesional paretic hand and increase its use in daily activities, although the ipsilesional hand may remain preferred for fine motor activities. Studies in monkeys have shown that minimal forced use of the contralesional hand, which was the preferred hand prior to brain injury, can produce remarkable recovery of function.
View Article and Find Full Text PDFHigh-resolution anterograde tracers and stereology were used to study the terminal organization of the corticospinal projection (CSP) from the rostral portion of the primary motor cortex (M1r) to spinal levels C5-T1. Most of this projection (90%) terminated contralaterally within laminae V-IX, with the densest distribution in lamina VII. Moderate bouton numbers occurred in laminae VI, VIII, and IX with few in lamina V.
View Article and Find Full Text PDFObjective: In some cases of incomplete cervical spinal cord injury (iSCI) there is marked paresis and dysfunction of upper-extremity movement but not lower-extremity movement. A continued explanation of such symptoms is a somatotopic organization of corticospinal tract (CST) fibers passing through the decussation at the craniovertebral junction (CVJ) and lateral CST (LCST). In central cord syndrome, it has been suggested that injury to the core of the cervical cord may include selective damage to medially located arm/hand LCST fibers, without compromising laterally located leg fibers.
View Article and Find Full Text PDFWe previously reported that rhesus monkeys recover spontaneous use of the more impaired (contralesional) hand following neurosurgical lesions to the arm/hand representations of primary motor cortex (M1) and lateral premotor cortex (LPMC) (F2 lesion) when tested for reduced use (RU) in a fine motor task allowing use of either hand. Recovery occurred without constraint of the less impaired hand and with occasional forced use of the more impaired hand, which was the preferred hand for use in fine motor tasks before the lesion. Here, we compared recovery of five F2 lesion cases in the same RU test to recovery after unilateral lesions of M1, LPMC, S1 and anterior portion of parietal cortex (F2P2 lesion - four cases).
View Article and Find Full Text PDFWe tested the hypothesis that injury to frontoparietal sensorimotor areas causes greater initial impairments in performance and poorer recovery of ipsilesional dexterous hand/finger movements than lesions limited to frontal motor areas in rhesus monkeys. Reaching and grasping/manipulation of small targets with the ipsilesional hand were assessed for 6-12 months post-injury using two motor tests. Initial post-lesion motor skill and long-term recovery of motor skill were compared in two groups of monkeys: (1) F2 group-five cases with lesions of arm areas of primary motor cortex (M1) and lateral premotor cortex (LPMC) and (2) F2P2 group-five cases with F2 lesions + lesions of arm areas of primary somatosensory cortex and the anterior portion of area 5.
View Article and Find Full Text PDFHigh-resolution tract tracing and stereology were used to study the terminal organization of the corticospinal projection (CSP) from the ventral (v) and dorsal (d) regions of the lateral premotor cortex (LPMC) to spinal levels C5-T1. The LPMCv CSP originated from the postarcuate sulcus region, was bilateral, sparse, and primarily targeted the dorsolateral and ventromedial sectors of contralateral lamina VII. The convexity/lateral part of LPMCv did not project below C2.
View Article and Find Full Text PDFThe ipsilateral corticopontine projection (iCPP) represents a massive descending axon system terminating in the pontine nuclei (PN). In the primate, this projection is well known for its dominant influence on contralateral upper limb movements through the classical cerebrocerebellar circuity system. Although a much weaker contralateral corticopontine projection (cCPP) from motor cortex to the paramedian region has been reported in the non-human primate brain, we provide the first comprehensive description of the cCPP from the lateral motor cortex using high resolution anterograde tract tracing in .
View Article and Find Full Text PDFWe tested the hypothesis that arm/hand motor recovery after injury of the lateral sensorimotor cortex is associated with upregulation of the corticoreticular projection (CRP) from the supplementary motor cortex (M2) to the gigantocellular reticular nucleus of the medulla (Gi). Three groups of rhesus monkeys of both genders were studied: five controls, four cases with lesions of the arm/hand area of the primary motor cortex (M1) and the lateral premotor cortex (LPMC; F2 lesion group), and five cases with lesions of the arm/hand area of M1, LPMC, S1, and anterior parietal cortex (F2P2 lesion group). CRP strength was assessed using high-resolution anterograde tracers injected into the arm/hand area of M2 and stereology to estimate of the number of synaptic boutons in the Gi.
View Article and Find Full Text PDFSubcortical white matter injury is often accompanied by orofacial motor dysfunction, but little is known about the structural substrates accounting for these common neurological deficits. We studied the trajectory of the corticobulbar projection from the orofacial region of the primary (M1), ventrolateral (LPMCv), supplementary (M2), rostral cingulate (M3) and caudal cingulate (M4) motor regions through the corona radiata (CR), internal capsule (IC) and crus cerebri of the cerebral peduncle (ccCP). In the CR each pathway was segregated.
View Article and Find Full Text PDFThe effects of primary somatosensory cortex (S1) injury on recovery of contralateral upper limb reaching and grasping were studied by comparing the consequences of isolated lesions to the arm/hand region of primary motor cortex (M1) and lateral premotor cortex (LPMC) to lesions of these same areas plus anterior parietal cortex (S1 and rostral area PE). We used multiple linear regression to assess the effects of gray and white matter lesion volumes on deficits in reaching and fine motor performance during the first month after the lesion, and during recovery of function over 3, 6 and 12months post-injury in 13 monkeys. Subjects with frontoparietal lesions exhibited larger deficits and poorer recovery as predicted, including one subject with extensive peri-Rolandic injury developing learned nonuse after showing signs of recovery.
View Article and Find Full Text PDFThe cytoarchitecture and cortical connections of the ventral motor region are investigated using Nissl, and NeuN staining methods and the fluorescent retrograde tract tracing technique in the rhesus monkey. On the basis of gradual laminar differentiation, it is shown that the ventral motor region stems from the ventral proisocortical area (anterior insula and dorsal Sylvian opercular region). The cytoarchitecture of the ventral motor region is shown to progress in three lines, as we have recently shown for the dorsal motor region.
View Article and Find Full Text PDFUpper extremity hemiplegia is a common consequence of unilateral cortical stroke. Understanding the role of the unaffected cerebral hemisphere in the motor recovery process has been encouraged, in part, by the presence of ipsilateral corticospinal projections (iCSP). We examined the neuroplastic response of the iCSP from the contralesional primary motor cortex (cM1) hand/arm area to spinal levels C5-T1 after spontaneous long-term recovery from isolated frontal lobe injury and isolated frontoparietal injury.
View Article and Find Full Text PDFConcurrent damage to the lateral frontal and parietal cortex is common following middle cerebral artery infarction, leading to upper extremity paresis, paresthesia, and sensory loss. Motor recovery is often poor, and the mechanisms that support or impede this process are unclear. Since the medial wall of the cerebral hemisphere is commonly spared following stroke, we investigated the spontaneous long-term (6 and 12 month) effects of lateral frontoparietal injury (F2P2 lesion) on the terminal distribution of the corticospinal projection (CSP) from intact, ipsilesional supplementary motor cortex (M2) at spinal levels C5 to T1.
View Article and Find Full Text PDFWe investigated recovery of precision grasping of small objects between the index finger and thumb of the impaired hand without forced use after surgically placed lesions to the hand/arm areas of M1 and M1 + lateral premotor cortex in two monkeys. The unilateral lesions were contralateral to the monkey's preferred hand, which was established in prelesion testing as the hand used most often to acquire raisins in a foraging board (FB) task in which the monkey was free to use either hand to acquire treats. The lesions initially produced a clear paresis of the contralesional hand and use of only the ipsilesional hand to acquire raisins in the FB task.
View Article and Find Full Text PDFThe corticobulbar projection to the hypoglossal nucleus was studied from the frontal, parietal, cingulate, and insular cortices in the rhesus monkey by using high-resolution anterograde tracers and stereology. The hypoglossal nucleus received bilateral input from the face/head region of the primary (M1), ventrolateral pre- (LPMCv), supplementary (M2), rostral cingulate (M3), and caudal cingulate (M4) motor cortices. Additional bilateral corticohypoglossal projections were found from the dorsolateral premotor cortex (LPMCd), ventrolateral proisocortical motor area (ProM), ventrolateral primary somatosensory cortex (S1), rostral insula, and pregenual region of the anterior cingulate gyrus (areas 24/32).
View Article and Find Full Text PDFTo further our understanding of the corticospinal projection (CSP) from the hand/arm representation of the primary motor cortex (M1), high-resolution anterograde tracing methodology and stereology were used to investigate the terminal distribution of this connection at spinal levels C5 to T1. The highest number of labeled terminal boutons occurred contralaterally (98%) with few ipsilaterally (2%). Contralaterally, labeled boutons were located within laminae I-X, with the densest distribution found in lamina VII and, to a lesser extent, laminae IX and VI.
View Article and Find Full Text PDFThe purpose of this study was to test whether brain laterality influences spontaneous recovery of hand motor function after controlled brain injuries to arm areas of M1 and lateral premotor cortex (LPMC) of the hemisphere contralateral to the preferred hand in rhesus monkeys. We hypothesized that monkeys with stronger hand preference would exhibit poorer recovery of skilled hand use after such brain injury. Degree of handedness was assessed using a standard dexterity board task in which subjects could use either hand to retrieve small food pellets.
View Article and Find Full Text PDFThe cytoarchitecture and cortical connections of the anterior cingulate, medial and dorsal premotor, and precentral region are investigated using the Nissl and NeuN staining methods and the fluorescent retrograde tract tracing technique. There is a gradual stepwise laminar change in the cytoarchitectonic organization from the proisocortical anterior cingulate region, through the lower and upper banks of the cingulate sulcus, to the dorsolateral isocortical premotor and precentral motor regions of the frontal lobe. These changes are characterized by a gradational emphasis on the lower stratum layers (V and VI) in the proisocortical cingulate region to the upper stratum layers (II and III) in the premotor and precentral motor region.
View Article and Find Full Text PDFDamage to the motor cortex of one hemisphere has classically been associated with contralateral upper limb paresis, but recent patient studies have identified deficits in both upper limbs. In non-human primates, we tested the hypothesis that the severity of ipsilesional upper limb motor impairment in the early post-injury phase depends on the volume of gray and white matter damage of the motor areas of the frontal lobe. We also postulated that substantial recovery would accompany minimal task practice and that ipsilesional limb recovery would be correlated with recovery of the contralesional limb.
View Article and Find Full Text PDFThe purpose of this study was to determine if recovery of neurologically impaired hand function following isolated motor cortex injury would occur without constraint of the non-impaired limb, and without daily forced use of the impaired limb. Nine monkeys (Macaca mulatta) received neurosurgical lesions of various extents to arm representations of motor cortex in the hemisphere contralateral to the preferred hand. After the lesion, no physical constraints were placed on the ipsilesional arm/hand and motor testing was carried out weekly with a maximum of 40 attempts in two fine motor tasks that required use of the contralesional hand for successful food acquisition.
View Article and Find Full Text PDFBrain injury affecting the frontal motor cortex or its descending axons often causes contralateral upper extremity paresis. Although recovery is variable, the underlying mechanisms supporting favorable motor recovery remain unclear. Because the medial wall of the cerebral hemisphere is often spared following brain injury and recent functional neuroimaging studies in patients indicate a potential role for this brain region in the recovery process, we investigated the long-term effects of isolated lateral frontal motor cortical injury on the corticospinal projection (CSP) from intact, ipsilesional supplementary motor cortex (M2).
View Article and Find Full Text PDFDue to the heterogeneous nature of most brain injuries, the contributions of gray and white matter involvement to motor deficits and recovery potential remain obscure. We tested the hypothesis that duration of hand motor impairment and recovery of skilled arm and hand motor function depends on the volume of gray and white matter damage of the frontal lobe. Lesions of the primary motor cortex (M1), M1 + lateral premotor cortex (LPMC), M1 + LPMC + supplementary motor cortex (M2) or multifocal lesions affecting motor areas and medial prefrontal cortex were evaluated in rhesus monkeys.
View Article and Find Full Text PDFThe primate facial nucleus is a prominent brainstem structure that is composed of cell bodies giving rise to axons forming the facial nerve. It is musculotopically organized, but we know little about the morphological features of its motor neurons. Using the Lucifer Yellow intracellular filling method, we examined 11 morphological parameters of motor neurons innervating the monkey orbicularis oculi (OO) muscle, which plays an important role in eyelid closure and voluntary and emotional facial expressions.
View Article and Find Full Text PDF