Omega-3 polyunsaturated fatty acids (n-3 PUFA), enriched in fish oils, are increasingly recognized to have potential benefits for treating many human afflictions. Despite the importance of PUFA, their molecular mechanism of action remains unclear. One emerging hypothesis is that phospholipids containing n-3 PUFA acyl chains modify the structure and composition of membrane rafts, thus affecting cell signaling.
View Article and Find Full Text PDFPentylenetetrazol (PTZ) is an epileptogenic agent, which is widely used in the determination of epilepsy-induced alterations and in the assessment of anticonvulsant agents in epileptic studies. Even though PTZ is suggested to induce repetitive firing of nerve fibers and shorten the refractory, its mechanism of action is only partially understood. In the literature there are discrepancies for its action mechanism.
View Article and Find Full Text PDFVitamin E (alpha-tocopherol) has long been recognized as the major antioxidant in biological membranes, and yet many structurally related questions persist of how the vitamin functions. For example, the very low levels of alpha-tocopherol reported for whole cell extracts question how this molecule can successfully protect the comparatively enormous quantities of PUFA-containing phospholipids found in membranes that are highly susceptible to oxidative attack. The contemporary realization that membranes laterally segregate into regions of distinct lipid composition (domains), we propose, provides the answer.
View Article and Find Full Text PDFA central tenet of the lipid raft model is the existence of non-raft domains. In support of this view, we have established in model membranes that a phosphatidylethanolamine (PE)-containing docosahexaenoic acid (DHA) forms organizationally distinct non-raft domains in the presence of sphingomyelin (SM) and cholesterol (Chol). We have shown that formation of DHA-rich domains is driven by unfavorable molecular interactions between the rigid Chol molecule and the highly flexible DHA acyl chain.
View Article and Find Full Text PDFBiochim Biophys Acta
January 2009
Polyunsaturated fatty acids (PUFA) constitute an influential group of molecules that promote health by an as yet unknown mechanism. They are structurally distinguished from less unsaturated fatty acids by the presence of a repeating =CH-CH(2)-CH= unit that produces an extremely flexible chain rapidly reorienting through conformational states. The most highly unsaturated case in point is docosahexaenoic acid (DHA) with 6 double bonds.
View Article and Find Full Text PDFWhat distinguishes polyunsaturated fatty acids (PUFAs) from less unsaturated fatty acids is the presence of a repeating =CH-CH(2)-CH= unit that produces an extremely flexible structure rapidly isomerizing through conformational states. Docosahexaenoic acid (DHA) with 6 double bonds is the most extreme example. The focus of this review is the profound impact that the high disorder of DHA has on its interaction with cholesterol when the PUFA is incorporated into membrane phospholipids.
View Article and Find Full Text PDFDocosahexaenoic acid (DHA) is the longest, most unsaturated, and hence, most oxidizable fatty acid commonly found in nature. The mechanisms behind DHA's many biological functions remain a subject of much debate. Here we review one important, but often unstudied, aspect of DHA function, namely, the potential role of its many oxidation products.
View Article and Find Full Text PDFSolid-state (2)H-NMR of [(2)H(31)]-N-palmitoylsphingomyelin ([(2)H(31)]16:0SM, PSM*), supplemented by differential scanning calorimetry, was used for the first time, to our knowledge, to investigate the molecular organization of the sphingolipid in 1:1:1 mol mixtures with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (16:0-18:1PE, POPE) or 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphoethanolamine (16:0-22:6PE, PDPE) and cholesterol. When compared with (2)H-NMR data for analogous mixtures of [(2)H(31)]16:0-18:1PE (POPE*) or [(2)H(31)]16:0-22:6PE (PDPE*) with egg SM and cholesterol, molecular interactions of oleic acid (OA) versus docosahexaenoic acid (DHA) are distinguished, and details of membrane architecture emerge. SM-rich, characterized by higher-order, and PE-rich, characterized by lower-order, domains <20 nm in size are formed in the absence and presence of cholesterol in both OA- and DHA-containing membranes.
View Article and Find Full Text PDFCurrent understanding of biologic membrane structure and function is largely based on the concept of lipid rafts. Lipid rafts are composed primarily of tightly packed, liquid-ordered sphingolipids/cholesterol/saturated phospholipids that float in a sea of more unsaturated and loosely packed, liquid-disordered lipids. Lipid rafts have important clinical implications because many important membrane-signaling proteins are located within the raft regions of the membrane, and alterations in raft structure can alter activity of these signaling proteins.
View Article and Find Full Text PDFEpidemiologic evidence has linked trans fatty acids (TFAs) in the diet to coronary heart disease in human populations. It has been estimated that dietary TFAs from partially hydrogenated oils may be responsible for between 30,000 and 100,000 premature coronary deaths per year in the United States. Although it is known that TFAs increase low-density lipoprotein (LDL) cholesterol levels and decrease high-density lipoprotein (HDL) cholesterol levels (markers of coronary heart disease), there is little known about the mechanisms by which TFAs actually function at the cellular level.
View Article and Find Full Text PDFMany clinical studies report that (n-3) PUFAs decrease the incidence of sudden death in patients with coronary artery disease after myocardial infarction (MI). However, the mechanisms for the beneficial effects of (n-3) PUFAs are unknown. The objectives of the present study were to confirm the findings from clinical trials using an animal model of MI in which dietary intake could be closely controlled and to utilize the model to investigate molecular mechanisms for the beneficial effects of (n-3) PUFAs.
View Article and Find Full Text PDFThe major mammalian plasma membrane lipids are phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), and cholesterol. Whereas PC-cholesterol interactions are well studied, far less is known about those between PE and cholesterol. Here, we investigated the molecular organization of cholesterol in PEs that vary in their degree of acyl chain unsaturation.
View Article and Find Full Text PDFWith 22 carbons and 6 double bonds docosahexaenoic acid (DHA) is the longest and most unsaturated fatty acid commonly found in membranes. It represents the extreme example of a class of important human health promoting agents known as omega-3 fatty acids. DHA is particularly abundant in retinal and brain tissue, often comprising about 50% of the membrane's total acyl chains.
View Article and Find Full Text PDFIntroduction: Epidemiological evidence strongly links fish oil, which is rich in docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), with low incidences of several types of cancer. The inhibitory effects of omega-3 polyunsaturated fatty acids on cancer development and progression are supported by studies with cultured cells and animal models. Propofol (2,6-diisopropylphenol) is the most extensively used general anesthetic-sedative agent employed today and is nontoxic to humans at high levels (50 microg/ml).
View Article and Find Full Text PDFThe effect of fish oils and their active omega-3 fatty acid constituents, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), were investigated on breast cancer growth. In in vivo experiments, mice were fed diets that were rich in either omega-3 (fish oil) or omega-6 (corn oil) fatty acids. Three weeks after implantation of MDA-MB-231 breast cancer cells, the tumor volume and weight were significantly lower (p < 0.
View Article and Find Full Text PDFPhenylephrine (PE) induces cardiac hypertrophy through multiple signaling pathways including pathways involving protein kinase C (PKC) activation. Docosahexaenoic acid (DHA), an omega-3 fatty acid, has been shown to reduce the PE-induced hypertrophic responses. However, the effects of DHA on PKC activation and translocation are controversial.
View Article and Find Full Text PDFEpidemiological evidence has established that ingestion of long-chain polyunsaturated omega-3 fatty acids (omega-3 PUFAs), abundant in fish oils, have profound effects on many human disorders and diseases, including cardiovascular disease and cancer. Here we briefly review the dietary recommendations and the food sources that are naturally enriched by these fatty acids. There are also a number of products including eggs, bread, and cereals available to supplement omega-3 fatty acid dietary intake.
View Article and Find Full Text PDFA myriad of health benefits including the prevention of cancer and heart disease accompanies consumption of polyunsaturated fatty acids (PUFA). Of special importance is the omega-3-PUFA docosahexaenoic acid (DHA), with 22 carbons and six double bonds that constitute the most highly unsaturated fatty acid naturally occurring. Our experiments target the membrane as a likely site of action and focus upon the interaction of cholesterol with PUFA-containing phospholipids.
View Article and Find Full Text PDFWe have previously suggested that the omega-3 polyunsaturated fatty acid, docosahexaenoic acid (DHA) may in part function by enhancing membrane lipid phase separation into lipid rafts. Here we further tested for differences in the molecular interactions of an oleic (OA) versus DHA-containing phospholipid with sphingomyelin (SM) and cholesterol (CHOL) utilizing (2)H NMR spectroscopy, differential scanning calorimetry, atomic force microscopy, and detergent extractions in model bilayer membranes. (2)H NMR and DSC (differential scanning calorimetry) established the phase behavior of the OA-containing 1-[(2)H(31)]palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (16:0-18:1PE-d(31))/SM (1:1) and the DHA-containing 1-[(2)H(31)]palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphoethanolamine (16:0-22:6PE-d(31))/SM (1:1) in the absence and presence of equimolar CHOL.
View Article and Find Full Text PDFMany of the cardiovascular benefits of fish oil result from the antiarrhythmic actions of the n-3 polyunsaturated lipids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). The beneficial effects of DHA/EPA in patients with coronary artery disease and myocardial infarction may also result from modulation of the myocardial hypertrophic response. Hypertrophy was assessed in neonatal cardiomyocytes exposed to phenylephrine (PE) by measuring cell surface area, total protein synthesis ((14)C leucine incorporation), and the organization of sarcomeric alpha-actinin and by monitoring expression of atrial natriuretic factor (ANF).
View Article and Find Full Text PDFThe ever-increasing amount of trans fatty acids in the human diet has been linked to a variety of afflictions, most notably coronary heart disease and arteriosclerosis. The mechanism of why the replacement of cis fatty acids with their trans counterparts can be detrimental to the health of an individual remains a mystery. Here, we compare the differences in membrane physical properties including molecular dynamics, lateral lipid packing, thermotropic phase behavior, "fluidity", lateral mobility, and permeability between model membranes (lipid monolayers and bilayers) composed of cis- and trans-containing phosphatidylcholines (PCs).
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2003
By one hypothesis, phospholipids containing unsaturated fatty acids may be involved in phase separation from the lipid raft molecules sphingomyelin (SM) and cholesterol (CHOL). We tested the effect of increasing the number of double bonds in the acyl chains of phosphatidylethanolamines (PEs) on phase separation from SM/CHOL. The detergent extraction method was employed on various homoacid and heteroacid PEs in mixed vesicles composed of PE/SM/CHOL (1:1:1mol).
View Article and Find Full Text PDFDocosahexaenoic acid (DHA) with 22-carbons and 6 double bonds is the extreme example of an omega-3 polyunsaturated fatty acid (PUFA). DHA has strong medical implications since its dietary presence has been positively linked to the prevention of numerous human afflictions including cancer and heart disease. The PUFA, moreover, is essential to neurological function.
View Article and Find Full Text PDFDocosahexaenoic acid (DHA, 22:6) containing phospholipids have been postulated to be involved in promoting lateral segregation within membranes into cholesterol- (CHOL-) rich and CHOL-poor lipid microdomains. Here we investigated the specific molecular interactions of phospholipid bilayers composed of 1-[(2)H(31)]palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphoethanolamine (16:0-22:6PE-d(31)) or 1-[(2)H(31)]palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (16:0-18:1PE-d(31)) with equimolar CHOL using solid-state (2)H NMR spectroscopy and low- and wide-angle X-ray diffraction (XRD). Moment analysis of (2)H NMR spectra obtained as a function of temperature reveals that the main chain melting transition and the lamellar-to-inverted hexagonal (H(II)) phase transition of 16:0-22:6PE-d(31) remain in the presence of equimolar CHOL, whereas addition of equimolar CHOL essentially obliterates the gel-to-liquid crystalline transition of 16:0-18:1PE-d(31).
View Article and Find Full Text PDF