Am J Physiol Lung Cell Mol Physiol
December 2024
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease, which is usually diagnosed late in advanced stages. Little is known about the subclinical development of IPF. We previously generated a mouse model with conditional deficiency () that develops IPF-like lung disease.
View Article and Find Full Text PDFThis study aimed to evaluate the impact of contrast media application on CT attenuation of the bone using a novel calcium-only imaging technique (VCa) from dual-layer spectral detector CT (DLCT), which enables CT-based bone mineral density measurement unimpeded by soft tissue components. For this, true non-contrast (TNC) and venous phase images (VP) of n = 97 patients were acquired. CT attenuation of the first lumbar vertebra (L1) was measured in TNC-VCa, VP-VCa, and in virtual non-contrast images (VNC).
View Article and Find Full Text PDFPurpose: To evaluate the prediction of vertebral fractures in plasma cell dyscrasias using dual-layer CT (DLCT) with quantitative assessment of conventional CT image data (CI), calcium suppressed image data (CaSupp), and calculation of virtual calcium-only (VCa) image data.
Material And Methods: Patients ( = 81) with the diagnosis of a plasma cell dyscrasia and whole-body DLCT at the time of diagnosis and follow-up were retrospectively enrolled. CI, CaSupp25, and CaSupp100 were quantitatively analyzed using regions of interest in the lumbar vertebral bodies and fractured vertebral bodies on baseline or follow-up imaging.
This study aimed to investigate the diagnostic performance of breast mass detection on monoenergetic image data at 40 keV (MonoE40) and on iodine maps (IM) compared with conventional image data (CI). In this prospective single-center case-control study, 50 breast cancer patients were examined using contrast-enhanced dual-layer spectral CT. For qualitative and quantitative comparison of MonoE40 and IM with CI image data, four blinded, independent readers assessed 300 randomized single slices (two slices for each imaging type per case) with or without cancerous lesions for the presence of a breast mass.
View Article and Find Full Text PDFEur J Radiol
September 2024
Objectives: To evaluate a novel calcium-only imaging technique (VCa) with subtracted bone marrow in osteoporosis in dual-layer CT (DLCT) compared to conventional CT images (CI) and dual-energy X-ray absorptiometry (DXA).
Material And Methods: Images of a multi-energy CT phantom with calcium inserts, quantitative CT calibration phantom, and of 55 patients (mean age: 64.6 ± 11.
A Bayesian linkage disequilibrium-based multiple-locus mixed model identified QTLs for fibre, seed and oil traits and predicted breeding worthiness of test lines, enabling their simultaneous improvement in cotton. Improving cotton seed and oil yields has become increasingly important while continuing to breed for higher lint yield. In this study, a novel Bayesian linkage disequilibrium-based multiple-locus mixed model was developed for QTL identification and genomic prediction (GP).
View Article and Find Full Text PDFExocrine and endocrine pancreas are interconnected anatomically and functionally, with vasculature facilitating bidirectional communication. Our understanding of this network remains limited, largely due to two-dimensional histology and missing combination with three-dimensional imaging. In this study, a multiscale 3D-imaging process was used to analyze a porcine pancreas.
View Article and Find Full Text PDFBackground: Cotton accounts for 80% of the global natural fibre production. Its leaf hairiness affects insect resistance, fibre yield, and economic value. However, this phenotype is still qualitatively assessed by visually attributing a Genotype Hairiness Score (GHS) to a leaf/plant, or by using the HairNet deep-learning model which also outputs a GHS.
View Article and Find Full Text PDFVerticillium wilt (VW) is an important and widespread disease of cotton and once established is long-lived and difficult to manage. In Australia, the non-defoliating pathotype of is the most common, and extremely virulent. Breeding cotton varieties with increased VW resistance is the most economical and effective method of controlling this disease and is greatly aided by understanding the genetics of resistance.
View Article and Find Full Text PDFPurpose: The aim of this study was to characterize a second-generation wide-detector dual-layer spectral computed tomography (CT) system for material quantification accuracy, acquisition parameter and patient size dependencies, and tissue characterization capabilities.
Methods: A phantom with multiple tissue-mimicking and material-specific inserts was scanned with a dual-layer spectral detector CT using different tube voltages, collimation widths, radiation dose levels, and size configurations. Accuracy of iodine density maps and virtual monoenergetic images (MonoE) were investigated.
Numerous genetic loci and several functionally characterized genes have been linked to determination of lint percentage (lint%), one of the most important cotton yield components, but we still know little about the major genetic components underlying lint%. Here, we first linked the genetic loci containing MYB25-like_At and HD1_At to the fiberless seed trait of 'SL1-7-1' and found that MYB25-like_At and HD1_At were very lowly expressed in 'SL1-7-1' ovules during fiber initiation. We then dissected the genetic components involved in determination of lint% using segregating populations derived from crosses of fuzzless mutants and intermediate segregants with different lint%, which not only confirmed the HD1_At locus but identified the HD1_Dt locus as being the major genetic components contributing to fiber initiation and lint%.
View Article and Find Full Text PDFObjectives: With the introduction of clinical photon-counting detector computed tomography (PCD-CT) and its novel reconstruction techniques, a quantitative investigation of different acquisition and reconstruction settings is necessary to optimize clinical acquisition protocols for metal artifact reduction.
Materials And Methods: A multienergy phantom was scanned on a clinical dual-source PCD-CT (NAEOTOM Alpha; Siemens Healthcare GmbH) with 4 different central inserts: water-equivalent plastic, aluminum, steel, and titanium. Acquisitions were performed at 120 kVp and 140 kVp (CTDI vol 10 mGy) and reconstructed as virtual monoenergetic images (VMIs; 110-150 keV), as T3D, and with the standard reconstruction "none" (70 keV VMI) using different reconstruction kernels (Br36, Br56) and with as well as without iterative metal artifact reduction (iMAR).
Background: This study provides a quantitative meta-analysis of pancreatic CT perfusion studies, investigating choice of study parameters, ability for quantitative discrimination of pancreatic diseases, and influence of acquisition and reconstruction parameters on reported results.
Methods: Based on a PubMed search with key terms 'pancreas' or 'pancreatic,' 'dynamic' or 'perfusion,' and 'computed tomography' or 'CT,' 491 articles published between 1982 and 2020 were screened for inclusion in the study. Inclusion criteria were: reported original data, human subjects, five or more datasets, measurements of pancreas or pancreatic pathologies, and reported quantitative perfusion parameters.
For implementation, performance evaluation and timing optimization of CT perfusion first pass analysis (FPA) by correlation with maximum slope model (MSM) in pancreatic adenocarcinoma, dynamic CT perfusion acquisitions of 34 time-points were performed in 16 pancreatic adenocarcinoma patients. Regions of interest were marked in both parenchyma and carcinoma. FPA, a low radiation exposure CT perfusion technique, was implemented.
View Article and Find Full Text PDFIntroduction: By using bolus tracking with an appropriate acquisition delay dual-energy computed tomography (DECT) iodine maps might serve as a replacement of CT perfusion maps at reduced radiation exposure. This study aimed to evaluate the optimal acquisition delays of DECT for the replacement of parameter maps calculated with the Patlak model in pancreatic adenocarcinoma by corresponding iodine maps.
Materials And Methods: Dual-source dynamic DECT acquisitions at 80 kV/Sn140 kV of 14 patients with pancreatic carcinoma were used to calculate CT perfusion maps of blood volume and permeability with the Patlak model.
Radiotherapy with protons or light ions can offer accurate and precise treatment delivery. Accurate knowledge of the stopping power ratio (SPR) distribution of the tissues in the patient is crucial for improving dose prediction in patients during planning. However, materials of uncertain stoichiometric composition such as dental implant and restoration materials can substantially impair particle therapy treatment planning due to related SPR prediction uncertainties.
View Article and Find Full Text PDFObjectives: Quantitative computed tomography (CT) plays an increasingly important role in phenotyping airway diseases. Lung parenchyma and airway inflammation could be quantified by contrast enhancement at CT, but its investigation by multiphasic examinations is limited. We aimed to quantify lung parenchyma and airway wall attenuation in a single contrast-enhanced spectral detector CT acquisition.
View Article and Find Full Text PDFAsynchronous calibration could allow opportunistic screening based on routine CT for early osteoporosis detection. In this phantom study, a bone mineral density (BMD) calibration phantom and multi-energy CT (MECT) phantom were imaged on eight different CT scanners with multiple tube voltages (80-150 kV) and image reconstruction settings (e.g.
View Article and Find Full Text PDFCotton is a key global fiber crop. However, yield potential is limited by the presence of endemic and introduced pests and diseases. The introduction of host plant resistance (HPR), defined as the purposeful use of resistant crop cultivars to reduce the impact of pests and diseases, has been a key breeding target for the Commonwealth Scientific and Industrial Research Organisation (CSIRO) cotton breeding program.
View Article and Find Full Text PDFX-ray computed tomography (CT) is a cardinal tool in clinical practice. It provides cross-sectional images within seconds. The recent introduction of clinical photon-counting CT allowed for an increase in spatial resolution by more than a factor of two resulting in a pixel size in the center of rotation of about 150 µm.
View Article and Find Full Text PDFThe Commonwealth Scientific and Industrial Research Organisation (CSIRO) cotton breeding program is the sole breeding effort for cotton in Australia, developing high performing cultivars for the local industry which is worth∼AU$3 billion per annum. The program is supported by Cotton Breeding Australia, a Joint Venture between CSIRO and the program's commercial partner, Cotton Seed Distributors Ltd. (CSD).
View Article and Find Full Text PDFGlobal plant breeding activities are reliant on the available genetic variation held in extant varieties and germplasm collections. Throughout the mid- to late 1900s, germplasm collecting efforts were prioritized for breeding programs to archive precious material before it disappeared and led to the development of the numerous large germplasm resources now available in different countries. In recent decades, however, the maintenance and particularly the expansion of these germplasm resources have come under threat, and there has been a significant decline in investment in further collecting expeditions, an increase in global biosecurity restrictions, and restrictions placed on the open exchange of some commercial germplasm between breeders.
View Article and Find Full Text PDFIn particle therapy treatment planning, dose calculation is conducted using patient-specific maps of tissue ion stopping power ratio (SPR) to predict beam ranges. Improving patient-specific SPR prediction is therefore essential for accurate dose calculation. In this study, we investigated the use of the Spectral CT 7500, a second-generation dual-layer spectral computed tomography (DLCT) system, as an alternative to conventional single-energy CT (SECT) for patient-specific SPR prediction.
View Article and Find Full Text PDFGenomic selection or genomic prediction (GP) has increasingly become an important molecular breeding technology for crop improvement. GP aims to utilise genome-wide marker data to predict genomic breeding value for traits of economic importance. Though GP studies have been widely conducted in various crop species such as wheat and maize, its application in cotton, an essential renewable textile fibre crop, is still significantly underdeveloped.
View Article and Find Full Text PDF