Publications by authors named "Stijn Temmerman"

Salt marshes are known as key ecosystems for nature-based climate mitigation through organic carbon sequestration into their sediment beds, but at the same time they are affected by accelerating sea level rise induced by climate warming. Consequently, an important question is how organic carbon accumulation rates (OCAR) of salt marshes will respond to future accelerating rates of relative sea level rise (RSLR). To date, existing insights are either based on (1) comparison of geographically distant marsh sites, differing in local RSLR rates but also in other environmental conditions that additionally can affect OCAR, or (2) experiments in given marsh sites, in which proxies for RSLR are manipulated, but run over periods of years instead of decades, the latter being the relevant time scale of marsh responses to RSLR.

View Article and Find Full Text PDF

Tidal marshes are often restored on compact agricultural soil that limits tidally induced groundwater dynamics and soil aeration after restoration. We hypothesized that impaired soil aeration affects biogeochemical cycling and leads to altered porewater nutrient concentrations in restored tidal marshes. We studied soil hydraulic properties, groundwater dynamics and porewater nutrient concentrations (nitrogen, phosphorus and dissolved silica) over the course of one year in a natural and a restored freshwater tidal marsh in the Scheldt estuary, Belgium.

View Article and Find Full Text PDF
Article Synopsis
  • Tidal marshes are highly effective at storing carbon, with a global average accumulation rate of 210 g C/m²/year, though this varies significantly across different locations.
  • Previous research on this topic has typically focused on a limited set of environmental factors, but this study expands that scope by examining 12 different variables across 477 tidal marsh sites worldwide.
  • The results indicate that tidal inundation parameters, vegetation productivity, and sea level rise are critical in influencing organic carbon content and accumulation rates in these marshes, emphasizing the importance of multiple interacting environmental factors.
View Article and Find Full Text PDF

Channel networks are key to coastal wetland functioning and resilience under climate change. Vegetation affects sediment and hydrodynamics in many different ways, which calls for a coherent framework to explain how vegetation shapes channel network geometry and functioning. Here, we introduce an idealized model that shows how coastal wetland vegetation creates more complexly branching networks by increasing the ratio of channel incision versus topographic diffusion rates, thereby amplifying the channelization feedback that recursively incises finer-scale side-channels.

View Article and Find Full Text PDF

The impact of land-use and land-cover change (LULCC) on ecosystem carbon (C) dynamics has been previously documented at local and global scales, but uncertainty persists for coastal wetlands due to geographical variability and field data limitations. Field-based assessments of plant and soil C contents and stocks of various LULCC types were conducted in nine regions along the coastline of China (21°-40°N). These regions cover natural coastal wetlands (NWs, including salt marshes and mangroves) and former wetlands converted to different LULCC types, including reclaimed wetlands (RWs), dry farmlands (DFs), paddy fields (PFs) and aquaculture ponds (APs).

View Article and Find Full Text PDF

Forecasting transitions between tidal ecosystem states, such as between bare tidal flats and vegetated marshes, is crucial because it may imply the irreversible loss of valuable ecosystem services. In this study, we combine geospatial analyses of three European estuaries with a simple numerical model to demonstrate that the development of micro-topographic patterning on tidal flats is an early indicator of marsh establishment. We first show that the development of micro-topographic patterns precedes vegetation establishment, and that patterns tend to form only on tidal flats with a slope of <0.

View Article and Find Full Text PDF

Much uncertainty exists about the vulnerability of valuable tidal marsh ecosystems to relative sea level rise. Previous assessments of resilience to sea level rise, to which marshes can adjust by sediment accretion and elevation gain, revealed contrasting results, depending on contemporary or Holocene geological data. By analyzing globally distributed contemporary data, we found that marsh sediment accretion increases in parity with sea level rise, seemingly confirming previously claimed marsh resilience.

View Article and Find Full Text PDF

Tidal marshes and mangroves are increasingly valued for nature-based mitigation of coastal storm impacts, such as flooding and shoreline erosion hazards, which are growing due to global change. As this review highlights, however, hazard mitigation by tidal wetlands is limited to certain conditions, and not all hazards are equally reduced. Tidal wetlands are effective in attenuating short-period storm-induced waves, but long-period storm surges, which elevate sea levels up to several meters for up to more than a day, are attenuated less effectively, or in some cases not at all, depending on storm conditions, wetland properties, and larger-scale coastal landscape geometry.

View Article and Find Full Text PDF

Sea level rise (SLR) is threatening low-lying coastal areas such as river deltas. The Ebro river Delta (Spain) is representative of coastal systems particularly vulnerable to SLR due to significant sediment retention behind upstream dams (up to 99%), thereby dramatically reducing the capacity for deltaic sediment accretion. Rice production is the main economic activity, covering 66% of the delta area, and is negatively affected by SLR because of flooding and soil salinization.

View Article and Find Full Text PDF

Global climate change is expected to impact hydrodynamic conditions in stream ecosystems. There is limited understanding of how stream ecosystems interact and possibly adapt to novel hydrodynamic conditions. Combining mathematical modelling with field data, we demonstrate that bio-physical feedback between plant growth and flow redistribution triggers spatial self-organization of in-channel vegetation that buffers for changed hydrological conditions.

View Article and Find Full Text PDF

In 2014, a DNA-based phylogenetic study confirming the paraphyly of the grass subtribe Sporobolinae proposed the creation of a large monophyletic genus Sporobolus, including (among others) species previously included in the genera Spartina, Calamovilfa, and Sporobolus. Spartina species have contributed substantially (and continue contributing) to our knowledge in multiple disciplines, including ecology, evolutionary biology, molecular biology, biogeography, experimental ecology, biological invasions, environmental management, restoration ecology, history, economics, and sociology. There is no rationale so compelling to subsume the name Spartina as a subgenus that could rival the striking, global iconic history and use of the name Spartina for over 200 yr.

View Article and Find Full Text PDF

Change history: In Fig. 2b of this Letter, 'Relative wetland change (km)' should have read 'Relative wetland change (%)' and equations (2) and (3) have been changed from 'RSLR = (m × TR) × Sed + i' and 'Sed = (RSLR - i)/(m × TR)', respectively. The definition of the variables in equation (2) has been updated.

View Article and Find Full Text PDF

The response of coastal wetlands to sea-level rise during the twenty-first century remains uncertain. Global-scale projections suggest that between 20 and 90 per cent (for low and high sea-level rise scenarios, respectively) of the present-day coastal wetland area will be lost, which will in turn result in the loss of biodiversity and highly valued ecosystem services. These projections do not necessarily take into account all essential geomorphological and socio-economic system feedbacks.

View Article and Find Full Text PDF

Tidal marshes are vegetated coastal ecosystems that are often considered as hotspots of atmospheric CO sequestration. Although large amounts of organic carbon (OC) are indeed being deposited on tidal marshes, there is no direct link between high OC deposition rates and high OC sequestration rates due to two main reasons. First, the deposited OC may become rapidly decomposed once it is buried and, second, a significant part of preserved OC may be allochthonous OC that has been sequestered elsewhere.

View Article and Find Full Text PDF

The presence of vegetation in stream ecosystems is highly dynamic in both space and time. A digital photography technique is developed to map aquatic vegetation cover at species level, which has a very high spatial and a flexible temporal resolution. A digital single-lens reflex (DSLR) camera mounted on a handheld telescopic pole is used.

View Article and Find Full Text PDF

The relative impact of top-down control by herbivores and bottom-up control by environmental conditions on vegetation is a subject of debate in ecology. In this study, we hypothesize that top-down control by goose foraging and bottom-up control by sediment accretion on vegetation composition within an ecosystem can co-occur but operate at different spatial and temporal scales. We used a highly dynamic marsh system with a large population of the Greylag goose (Anser anser) to investigate the potential importance of spatial and temporal scales on these processes.

View Article and Find Full Text PDF

In hydrodynamically stressful environments, some species--known as ecosystem engineers--are able to modify the environment for their own benefit. Little is known however, about the interaction between functional plant traits and ecosystem engineering. We studied the responses of Scirpus tabernaemontani and Scirpus maritimus to wave impact in full-scale flume experiments.

View Article and Find Full Text PDF

Recent research indicates that many ecosystems, including intertidal marshes, follow the alternative stable states theory. This theory implies that thresholds of environmental factors can mark a limit between two opposing stable ecosystem states, e.g.

View Article and Find Full Text PDF

Mounds originating from wind-blown sediment accumulation beneath vegetation (nebkhas) often indicate land degradation in dry areas. Thus far, most nebkha research has focused on individual plants. Here, we aimed to explore population-scale processes (up to scales of about 100 m) that might explain an observed nebkha landscape pattern.

View Article and Find Full Text PDF

The risk of flood disasters is increasing for many coastal societies owing to global and regional changes in climate conditions, sea-level rise, land subsidence and sediment supply. At the same time, in many locations, conventional coastal engineering solutions such as sea walls are increasingly challenged by these changes and their maintenance may become unsustainable. We argue that flood protection by ecosystem creation and restoration can provide a more sustainable, cost-effective and ecologically sound alternative to conventional coastal engineering and that, in suitable locations, it should be implemented globally and on a large scale.

View Article and Find Full Text PDF

Flux calculations demonstrate that many estuaries are natural filters for trace metals. Yet, the underlying processes are poorly investigated. In the present study, it was hypothesized that intertidal marshes contribute significantly to the contaminant filter function of estuaries.

View Article and Find Full Text PDF