Publications by authors named "Stijn Meganck"

An increasing amount of microarray gene expression data sets is available through public repositories. Their huge potential in making new findings is yet to be unlocked by making them available for large-scale analysis. In order to do so it is essential that independent studies designed for similar biological problems can be integrated, so that new insights can be obtained.

View Article and Find Full Text PDF

The potential of microarray gene expression (MAGE) data is only partially explored due to the limited number of samples in individual studies. This limitation can be surmounted by merging or integrating data sets originating from independent MAGE experiments, which are designed to study the same biological problem. However, this process is hindered by batch effects that are study-dependent and result in random data distortion; therefore numerical transformations are needed to render the integration of different data sets accurate and meaningful.

View Article and Find Full Text PDF

Background: With an abundant amount of microarray gene expression data sets available through public repositories, new possibilities lie in combining multiple existing data sets. In this new context, analysis itself is no longer the problem, but retrieving and consistently integrating all this data before delivering it to the wide variety of existing analysis tools becomes the new bottleneck.

Results: We present the newly released inSilicoMerging R/Bioconductor package which, together with the earlier released inSilicoDb R/Bioconductor package, allows consistent retrieval, integration and analysis of publicly available microarray gene expression data sets.

View Article and Find Full Text PDF

Genomics datasets are increasingly useful for gaining biomedical insights, with adoption in the clinic underway. However, multiple hurdles related to data management stand in the way of their efficient large-scale utilization. The solution proposed is a web-based data storage hub.

View Article and Find Full Text PDF

Genomic data integration is a key goal to be achieved towards large-scale genomic data analysis. This process is very challenging due to the diverse sources of information resulting from genomics experiments. In this work, we review methods designed to combine genomic data recorded from microarray gene expression (MAGE) experiments.

View Article and Find Full Text PDF

A plenitude of feature selection (FS) methods is available in the literature, most of them rising as a need to analyze data of very high dimension, usually hundreds or thousands of variables. Such data sets are now available in various application areas like combinatorial chemistry, text mining, multivariate imaging, or bioinformatics. As a general accepted rule, these methods are grouped in filters, wrappers, and embedded methods.

View Article and Find Full Text PDF

Microarray technology has become an integral part of biomedical research and increasing amounts of datasets become available through public repositories. However, re-use of these datasets is severely hindered by unstructured, missing or incorrect biological samples information; as well as the wide variety of preprocessing methods in use. The inSilicoDb R/Bioconductor package is a command-line front-end to the InSilico DB, a web-based database currently containing 86 104 expert-curated human Affymetrix expression profiles compiled from 1937 GEO repository series.

View Article and Find Full Text PDF