Publications by authors named "Stig Jensen"

We introduce a method for computing quantum mechanical forces through surface integrals over the stress tensor within the framework of the density functional theory. This approach avoids the inaccuracies of traditional force calculations using the Hellmann-Feynman theorem when applied to multiresolution wavelet representations of orbitals. By integrating the quantum mechanical stress tensor over surfaces that enclose individual nuclei, we achieve highly accurate forces that exhibit superior consistency with the potential energy surface.

View Article and Find Full Text PDF

Wavelets and multiwavelets have lately been adopted in quantum chemistry to overcome challenges presented by the two main families of basis sets: Gaussian atomic orbitals and plane waves. In addition to their numerical advantages (high precision, locality, fast algorithms for operator application, linear scaling with respect to system size, to mention a few), they provide a framework that narrows the gap between the theoretical formalism of the fundamental equations and the practical implementation in a working code. This realization led us to the development of the Python library called VAMPyR (Very Accurate Multiresolution Python Routines).

View Article and Find Full Text PDF

The importance of relativistic effects in quantum chemistry is widely recognized, not only for heavier elements but throughout the periodic table. At the same time, relativistic effects are strongest in the nuclear region, where the description of electrons through a linear combination of atomic orbitals becomes more challenging. Furthermore, the choice of basis sets for heavier elements is limited compared with lighter elements where precise basis sets are available.

View Article and Find Full Text PDF

New techniques in core-electron spectroscopy are necessary to resolve the structures of oxides of -elements and other strongly correlated materials that are present only as powders and not as single crystals. Thus, accurate quantum chemical methods must be developed to calculate core spectroscopic properties in such materials. In this contribution, we present an important development in this direction, extending our fully adaptive real-space multiwavelet basis framework to tackle the four-component Dirac-Coulomb-Breit Hamiltonian.

View Article and Find Full Text PDF

We show that medium-sized Gaussian basis sets lead to significant intramolecular basis set superposition errors at Hartree-Fock and density functional levels of theory, with artificial stabilization of compact over extended conformations for a 186 atom deca-peptide. Errors of ∼80 and ∼10 kJ/mol are observed, with polarized double zeta and polarized triple zeta quality basis sets, respectively. Two different procedures for taking the basis set superposition error into account are tested.

View Article and Find Full Text PDF

Objective: The aim of this study was to evaluate baseline differences by HIV status and the impact of pomalidomide on lymphocyte counts and T-cell subsets in patients with Kaposi sarcoma.

Design: We prospectively evaluated CD4 + and CD8 + T-cell phenotypes in 19 participants with Kaposi sarcoma enrolled on a phase 1/2 study of pomalidomide (NCT01495598), seven without HIV and 12 with HIV on antiretroviral therapy.

Methods: Trial participants received pomalidomide 5 mg orally for 21 days of 28-day cycles for up to 1 year.

View Article and Find Full Text PDF

We present a multiwavelet-based implementation of a quantum/classical polarizable continuum model. The solvent model uses a diffuse solute-solvent boundary and a position-dependent permittivity, lifting the sharp-boundary assumption underlying many existing continuum solvation models. We are able to include both surface and volume polarization effects in the quantum/classical coupling, with guaranteed precision, due to the adaptive refinement strategies of our multiwavelet implementation.

View Article and Find Full Text PDF

MRChem is a code for molecular electronic structure calculations, based on a multiwavelet adaptive basis representation. We provide a description of our implementation strategy and several benchmark calculations. Systems comprising more than a thousand orbitals are investigated at the Hartree-Fock level of theory, with an emphasis on scaling properties.

View Article and Find Full Text PDF

Much uncertainty persists about how the coronavirus (COVID-19) and its derived crisis effects will impact both the economy and forests. Here we conceptualize a recursive model where an initial COVID-19 supply-side shock hits first the Global North that, mediated by country-specific epidemic management strategies and other (fiscal, monetary, trade) policy responses feeds through to financial markets and the real economy. Analytically we distinguish two stylized scenarios: an optimistic V-shaped recovery where effective policy responses render most economic damages transitory, versus a pessimistic pathway of economic depression, where short-run pandemic impacts are dwarfed by the subsequent economic breakdown.

View Article and Find Full Text PDF

Transition metal-catalyzed reactions invariably include steps where ligands associate or dissociate. In order to obtain reliable energies for such reactions, sufficiently large basis sets need to be employed. In this paper, we have used high-precision multiwavelet calculations to compute the metal-ligand association energies for 27 transition metal complexes with common ligands, such as H, CO, olefins, and solvent molecules.

View Article and Find Full Text PDF

Benchmarking molecular properties with Gaussian-type orbital (GTO) basis sets can be challenging, because one has to assume that the computed property is at the complete basis set (CBS) limit, without a robust measure of the error. Multiwavelet (MW) bases can be systematically improved with a controllable error, which eliminates the need for such assumptions. In this work, we have used MWs within Kohn-Sham density functional theory to compute static polarizabilities for a set of 92 closed-shell and 32 open-shell species.

View Article and Find Full Text PDF

We have developed a digital and multiplexed platform for the rapid detection and telemonitoring of infections caused by Ebola and Marburg filoviruses. The system includes a flow cell assay cartridge that captures specific antibodies with microarrayed recombinant antigens from all six species of filovirus, and a smartphone fluorescent reader for high-performance interpretation of test results. Multiplexed viral proteins, which are expandable to include greater numbers of probes, were incorporated to obtain highest confidence results by cross-correlation, and a custom smartphone application was developed for data analysis, interpretation, and communication.

View Article and Find Full Text PDF

Minor emergency departments (ED) struggle to access sufficient expertise to supervise learners of lung and cardiac point-of-care ultrasound (POCUS). Using tele-ultrasound (tele-US) for remote supervision may remedy this situation. We aimed to evaluate the feasibility of real-time supervision via tele-US when applied to an everyday ED clinic.

View Article and Find Full Text PDF

Background: Supervision via tele-ultrasound presents a remedy for lacking on-site supervision in focused cardiac ultrasound, but knowledge of its impact is largely absent. We aimed to investigate tele-supervised physicians' cine-loop quality compared to that of non-supervised physicians and compared to that of experts.

Methods: We conducted a single-blinded cluster randomized controlled trial in an emergency department in western Denmark.

View Article and Find Full Text PDF

Using multiwavelets, we have obtained total energies and corresponding atomization energies for the GGA-PBE and hybrid-PBE0 density functionals for a test set of 211 molecules with an unprecedented and guaranteed μHartree accuracy. These quasi-exact references allow us to quantify the accuracy of standard all-electron basis sets that are believed to be highly accurate for molecules, such as Gaussian-type orbitals (GTOs), all-electron numeric atom-centered orbitals (NAOs), and full-potential augmented plane wave (APW) methods. We show that NAOs are able to achieve the so-called chemical accuracy (1 kcal/mol) for the typical basis set sizes used in applications, for both total and atomization energies.

View Article and Find Full Text PDF

Zika virus (ZIKV) infections occur in areas where dengue virus (DENV), West Nile virus (WNV), yellow fever virus (YFV), and other viruses of the genus cocirculate. The envelope (E) proteins of these closely related flaviviruses induce specific long-term immunity, yet subsequent infections are associated with cross-reactive antibody responses that may enhance disease susceptibility and severity. To gain a better understanding of ZIKV infections against a background of similar viral diseases, we examined serological immune responses to ZIKV, WNV, DENV, and YFV infections of humans and nonhuman primates (NHPs).

View Article and Find Full Text PDF

A detailed understanding of serological immune responses to Ebola and Marburg virus infections will facilitate the development of effective diagnostic methods, therapeutics, and vaccines. We examined antibodies from Ebola or Marburg survivors 1 to 14 years after recovery from disease, by using a microarray that displayed recombinant nucleoprotein (NP), viral protein 40 (VP40), envelope glycoprotein (GP), and inactivated whole virions from six species of filoviruses. All three outbreak cohorts exhibited significant antibody responses to antigens from the original infecting species and a pattern of additional filoviruses that varied by outbreak.

View Article and Find Full Text PDF

Multiwavelets are emerging as an attractive alternative to traditional basis sets such as Gaussian-type orbitals and plane waves. One of their distinctive properties is the ability to reach the basis set limit (often a chimera for traditional approaches) reliably and consistently by fixing the desired precision ε. We present our multiwavelet implementation of the linear response formalism, applied to static magnetic properties, at the self-consistent field level of theory (both for Hartree-Fock and density functional theories).

View Article and Find Full Text PDF

Idiopathic CD4 lymphopenia (ICL) is a rare syndrome defined by low CD4 T-cell counts (<300/µL) without evidence of HIV infection or other known cause of immunodeficiency. ICL confers an increased risk of opportunistic infections and has no established treatment. Interleukin-7 (IL-7) is fundamental for thymopoiesis, T-cell homeostasis, and survival of mature T cells, which provides a rationale for its potential use as an immunotherapeutic agent for ICL.

View Article and Find Full Text PDF

This study compares the time required to activate a grasp or function of a hand prosthesis when using an electromyogram (EMG) based control scheme and when using a control scheme combining EMG and control signals from an inductive tongue control system (ITCS). Using a cross-over study design, 10 able-bodied subjects used a computer model of a hand and completed simulated grasping exercises. The time required to activate grasps was recorded and analyzed for both control schemes.

View Article and Find Full Text PDF

Paradoxical tuberculosis-associated immune reconstitution inflammatory syndrome (TB-IRIS) is an aberrant inflammatory response occurring in a subset of TB-HIV co-infected patients initiating anti-retroviral therapy (ART). Here, we examined monocyte activation by prospectively quantitating pro-inflammatory plasma markers and monocyte subsets in TB-HIV co-infected patients from a South Indian cohort at baseline and following ART initiation at the time of IRIS, or at equivalent time points in non-IRIS controls. Pro-inflammatory biomarkers of innate and myeloid cell activation were increased in plasma of IRIS patients pre-ART and at the time of IRIS; this association was confirmed in a second cohort in South Africa.

View Article and Find Full Text PDF

The antiviral lectins griffithsin (GRFT), cyanovirin-N (CV-N), and scytovirin (SVN), which inhibit several enveloped viruses, including lentiviruses, were examined for their ability to inhibit entry mediated by Env proteins of delta- and gammaretroviruses. The glycoproteins from human T-cell leukemia virus type 1 (HTLV-1) were resistant to the antiviral effects of all three lectins. For gammaretroviruses, CV-N inhibited entry mediated by some but not all of the envelopes examined, whereas GRFT and SVN displayed only little or no effect.

View Article and Find Full Text PDF

Gene silencing by RNA interference (RNAi) can be achieved by the ectopic expression of tailored short hairpin RNAs (shRNAs) which after export to the cytoplasm are processed by Dicer and incorporated into the RNA induced silencing complex (RISC). Design rules for shRNAs have been the focus of several studies, but only a few reports have turned the attention to the sequence of the loop-region. In this work we selected high-functional and low-functional shRNA loops from retroviral hairpin-loop-libraries in an RNAi reporter assay.

View Article and Find Full Text PDF

We describe herein the synthesis of a triptycene-based surfactant designed with the ability to solubilise single-walled carbon nanotubes (SWNTs) and C(60) in water through non-covalent interactions. Furthermore, an amphiphilic naphthalene-based surfactant with the same ability to solubilise SWNTs and C(60) has also been prepared. The compounds synthesised were designed with either two ionic or non-ionic tails to ensure a large number of supramolecular interactions with the solvent, thereby promoting strong solubilisation.

View Article and Find Full Text PDF

Nuclear primary microRNA (pri-miRNA) processing catalyzed by the DGCR8-Drosha (Microprocessor) complex is highly regulated. Little is known, however, about how microRNA biogenesis is spatially organized within the mammalian nucleus. Here, we image for the first time, in living cells and at the level of a single microRNA cluster, the intranuclear distribution of untagged, endogenously-expressed pri-miRNAs generated at the human imprinted chromosome 19 microRNA cluster (C19MC), from the environment of transcription sites to single molecules of fully released DGCR8-bound pri-miRNAs dispersed throughout the nucleoplasm.

View Article and Find Full Text PDF