The assessment of skin sensitization has evolved over the past few years to include in vitro assessments of key events along the adverse outcome pathway and opportunistically capitalize on the strengths of in silico methods to support a weight of evidence assessment without conducting a test in animals. While in silico methods vary greatly in their purpose and format; there is a need to standardize the underlying principles on which such models are developed and to make transparent the implications for the uncertainty in the overall assessment. In this contribution, the relationship between skin sensitization relevant effects, mechanisms, and endpoints are built into a hazard assessment framework.
View Article and Find Full Text PDFIn silico toxicology (IST) approaches to rapidly assess chemical hazard, and usage of such methods is increasing in all applications but especially for regulatory submissions, such as for assessing chemicals under REACH as well as the ICH M7 guideline for drug impurities. There are a number of obstacles to performing an IST assessment, including uncertainty in how such an assessment and associated expert review should be performed or what is fit for purpose, as well as a lack of confidence that the results will be accepted by colleagues, collaborators and regulatory authorities. To address this, a project to develop a series of IST protocols for different hazard endpoints has been initiated and this paper describes the genetic toxicity in silico (GIST) protocol.
View Article and Find Full Text PDFPolyethylene glycol (PEG) is an inert, water soluble polymer, used for decades in pharmaceuticals. Although PEG is considered safe, concerns persist about the potential adverse effects of long-term exposure to PEG-containing therapies, specifically in children, following the introduction of PEGylated recombinant factor products used for the treatment of hemophilia. Given the absence of long-term surveillance data, and to evaluate the potential risk, we estimated PEG exposure in the pediatric population receiving PEGylated therapies with pediatric indications administered intravenously or intramuscularly.
View Article and Find Full Text PDFThe present publication surveys several applications of in silico (i.e., computational) toxicology approaches across different industries and institutions.
View Article and Find Full Text PDFIntroduction: BAX 855 is a PEGylated human full-length recombinant factor VIII (rFVIII) based on licensed rFVIII (ADVATE). The applied PEGylation technology has been optimized to retain functionality of the FVIII molecule, improve its pharmacokinetic properties and allow less frequent injections while maintaining efficacy.
Aim: The aim of this study was to confirm that the excellent safety profile of ADVATE remains unchanged after PEGylation.
Aim of the present study was a comprehensive investigation of the detoxification capacities of lactic acid bacteria (LAB) towards heterocyclic aromatic amines (HCA) formed during cooking of meat. It has been postulated that LAB prevent genotoxic and/or carcinogenic effects of HCA in laboratory rodents and humans via direct binding mechanisms. We measured the removal of the most abundant cooked food mutagens (AalphaC, PhIP, IQ, MeIQx, DiMeIQx) by eight LAB species.
View Article and Find Full Text PDFAim of the present study was to investigate the detoxification of two abundant mycotoxins, namely ochratoxin A (OTA) and patulin (PAT) which are frequently found in human foods, by lactic acid bacteria. The removal of the two mycotoxins from liquid medium by thirty different LAB strains was analyzed in a screening trial by the use of HPLC coupled with UV- or fluorescence detection. Two highly effective strains were identified; Lactobacillus acidophilus VM 20 caused a decrease of OTA by > or = 95% and Bifidobacterium animalis VM 12 reduced PAT levels by 80%.
View Article and Find Full Text PDFIt is assumed that reactive oxygen species (ROS) play a key role in inflammatory bowel diseases and colon cancer and a number of studies indicate that lactic acid bacteria (LAB) possess antioxidant properties and may prevent these diseases. In the present study, we developed a model which allowed us to investigate the prevention of oxidative DNA damage in human derived colon (HT29) cells by LAB. Furthermore, we investigated if these effects correlate with superoxide (O2(-)) resistance of the strains.
View Article and Find Full Text PDFbeta-Glucans (BGs) are polysaccharides that are found in the cell walls of organisms such as bacteria, fungi, and some cereals. The objective of the present study was to investigate the genotoxic and antigenotoxic effects of BG extracted from the mushroom Agaricus brasiliensis (=Agaricus blazei Murrill ss. Heinemann).
View Article and Find Full Text PDF