Publications by authors named "Sticht H"

The two retroviruses human T-lymphotropic virus type I (HTLV-I) and human immunodeficiency virus type 1 (HIV-1) are the causative agents of severe and fatal diseases including adult T-cell leukemia and the acquired immune deficiency syndrome (AIDS). Both viruses code for a protease that is essential for replication and therefore represents a key target for drugs interfering with viral infection. The retroviral proteases from HIV-1 and HTLV-I share 31% sequence identity and high structural similarities.

View Article and Find Full Text PDF

Metabotropic glutamate receptors (mGluRs) are regulated by interacting proteins that mostly bind to their intracellular C-termini. Here, we investigated if mGluR6, mGluR7a and mGluR8a C-termini form predefined binding surfaces or if they were rather unstructured. Limited tryptic digest of purified peptides argued against the formation of stable globular folds.

View Article and Find Full Text PDF

The coordination of activity in biological systems requires the existence of different signal transduction pathways that interact with one another and must be precisely regulated. The Src-family tyrosine kinases, which are found in many signaling pathways, differ in their physiological function despite their high overall structural similarity. In this context, the differences in the SH3-SH2 domain linkers might play a role for differential regulation, but the structural consequences of linker sequence remain poorly understood.

View Article and Find Full Text PDF

The pUL97 protein kinase encoded by human cytomegalovirus is a multifunctional determinant of the efficiency of viral replication and phosphorylates viral as well as cellular substrate proteins. Here, we report that pUL97 is expressed in two isoforms with molecular masses of approximately 90 and 100 kDa. ORF UL97 comprises an unusual coding strategy in that five in-frame ATG start codons are contained within the N-terminal 157 aa.

View Article and Find Full Text PDF

The etiology of non-syndromic hydrocephalus is poorly understood. Via positional cloning in a consanguineous family with autosomal recessive hydrocephalus we have now identified a homozygous splice site mutation in the CCDC88C gene as a novel cause of a complex hydrocephalic brain malformation. The only living patient showed normal psychomotor development at the age of 3 years and 3 months and her deceased aunt, who was assumed to suffer from the same condition, had mild mental retardation.

View Article and Find Full Text PDF

Mouse apolipoprotein M (m-apoM) displays a 79% sequence identity to human apolipoprotein M (h-apoM). Both proteins are apolipoproteins associated with high-density lipoproteins, with similar anticipated biological functions. The structure of h-apoM has recently been determined by X-ray crystallography, which revealed that h-apoM displays, as expected, a lipocalin-like fold characterized by an eight-stranded β‑barrel that encloses an internal fatty-acid-binding site.

View Article and Find Full Text PDF

Several lines of evidence suggest that the amyloid-β-peptide (Aβ) plays a central role in the pathogenesis of Alzheimer's disease (AD). Not only Aβ fibrils but also small soluble Aβ oligomers in particular are suspected to be the major toxic species responsible for disease development and progression. The present study reports on in vitro and in vivo properties of the Aβ targeting d-enantiomeric amino acid peptide D3.

View Article and Find Full Text PDF

The etiology of mental retardation remains elusive in the majority of cases. Microdeletions within chromosomal bands 5q14.3q15 were recently identified as a recurrent cause of severe mental retardation, epilepsy, muscular hypotonia, and variable minor anomalies.

View Article and Find Full Text PDF

The two homologous proteins ribonuclease A and onconase fold through conserved initial contacts but differ significantly in their thermodynamic stability. A disulfide bond is located in the folding initiation site of onconase (the C-terminal part of the protein molecule) that is missing in ribonuclease A, whereas the other three disulfide bonds of onconase are conserved in ribonuclease A. Consequently, the deletion of this C-terminal disulfide bond (C87-C104) allows the impact of the contacts in this region on the folding of onconase to be studied.

View Article and Find Full Text PDF

The nucleocytoplasmic egress of viral capsids is a rate-limiting step in the replication of the human cytomegalovirus (HCMV). As reported recently, an HCMV-specific nuclear egress complex is composed of viral and cellular proteins, in particular protein kinases with the capacity to induce destabilization of the nuclear lamina. Viral protein kinase pUL97 and cellular protein kinase C (PKC) play important roles by phosphorylating several types of nuclear lamins.

View Article and Find Full Text PDF

A major problem in the antiretroviral treatment of HIV-infections with protease-inhibitors is the emergence of resistance, resulting from the occurrence of distinct mutations within the protease molecule. In the present work we investigated the structural properties of a triple mutant (I54V-V82A-L90M) and a double mutant (V82A-L90M) that both confer strong resistance to ritonavir (RTV), but not to amprenavir (APV). For the unliganded double mutant protease molecular dynamics simulations revealed a contraction of the ligand binding pocket, which is enhanced by the I54V mutation.

View Article and Find Full Text PDF

Increased activity of the epithelial sodium channel (ENaC) in the respiratory airways contributes to the pathophysiology of cystic fibrosis (CF), a genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. In some patients suffering from atypical CF a mutation can be identified in only one CFTR allele. We recently identified in this group of CF patients a heterozygous mutation (W493R) in the alpha-subunit of ENaC.

View Article and Find Full Text PDF

Recent experimental data demonstrate that small, soluble amyloid-beta42 oligomers play an important role in Alzheimer's disease because they exhibit neurotoxic properties and also act as seed for fibril growth. We performed all-atom molecular dynamics simulations in explicit solvent of 0.7 micros in total on five Abeta9-42 oligomers (monomer through pentamer) starting from the fibril conformation.

View Article and Find Full Text PDF

Background And Purpose: Organic anion transporting polypeptide 1B3 (OATP1B3) (SLCO1B3) mediates the uptake of endogenous substrates (e.g. estrone-3-sulphate) and drugs (e.

View Article and Find Full Text PDF

Converging lines of evidence suggest that soluble A beta-amyloid oligomers play a pivotal role in the pathogenesis of Alzheimer's disease, and present direct effectors of synaptic and cognitive dysfunction. Three pathological E22-A beta-amyloid point mutants (E22G, E22K, E22Q) and the deletion mutant E22 Delta exhibit an enhanced tendency to form prefibrillar aggregates. The present study assessed the effect of these four mutations using molecular dynamics simulations and subsequent structural and energetic analyses.

View Article and Find Full Text PDF

Glaucoma, a main cause of blindness in the developed world, is characterized by progressive degeneration of retinal ganglion cells (RGCs), resulting in irreversible loss of vision. Although members of the neurotrophin gene family in various species are known to support the survival of numerous neuronal populations, including RGCs, it is less clear whether they are also required for survival and maintenance of adult neurons in humans. Here, we report seven different heterozygous mutations in the Neurotrophin-4 (NTF4) gene accounting for about 1.

View Article and Find Full Text PDF

Background: The TetR family member AmtR is the central regulator of nitrogen starvation response in Corynebacterium glutamicum. While the AmtR regulon was physiologically characterized in great detail up to now, mechanistic questions of AmtR binding were not addressed. This study presents a characterization of functionally important amino acids in the DNA binding domain of AmtR and of crucial nucleotides in the AmtR recognition motif.

View Article and Find Full Text PDF

Neurofibromatosis-Noonan syndrome (NFNS), an entity which combines both features of Noonan syndrome (NS) and neurofibromatosis type 1 (NF1), was etiologically unresolved until recent reports demonstrated NF1 mutations in the majority of patients with NFNS. The phenotypic overlap was explained by the involvement of the Ras pathway in both disorders, and, accordingly, clustering of the NF1 mutations in the GTPase-activating protein (GAP) domain of neurofibromin was observed in individuals with NFNS. We report on an 18-month-old girl with typical findings suggestive of NS in combination with multiple café-au-lait spots and bilateral optic gliomas suggestive of NF1.

View Article and Find Full Text PDF

Research involving estrogen and progesterone receptors (ER and PR) have greatly contributed to our understanding of cell signaling and transcriptional regulation. In addition to the classical ER and PR nuclear actions, new signaling pathways have recently been identified due to ER and PR association with cell membranes and signal transduction proteins. Bio-informatics has unveiled how ER and PR recognize their ligands, selective modulators and co-factors, which has helped to implement them as key targets in the treatment of benign and malignant tumors.

View Article and Find Full Text PDF

The nuclear egress of cytomegaloviral capsids traversing the nuclear envelope is dependent on a locally restricted destabilization of the rigid nuclear lamina. It has been suggested that the multi-component nuclear egress complex (NEC) that is formed is comprised of both viral and cellular proteins which act to recruit lamin-phosphorylating protein kinases. Recently, we reported that the lamina-associated human cytomegalovirus-encoded proteins pUL50 and pUL53, conserved among herpesviruses, interact with each other and recruit protein kinase C (PKC) to the nuclear envelope in transfected cells.

View Article and Find Full Text PDF

P19INK4d consists of five ankyrin repeats and controls the human cell cycle by inhibiting the cyclin D-dependent kinases 4 and 6. Posttranslational phosphorylation of p19INK4d has been described for Ser66 and Ser76. In the present study we show that mimicking the phosphorylation site of p19INK4d by a glutamate substitution at position 76 dramatically decreases the stability of the native but not an intermediate state.

View Article and Find Full Text PDF

Matrix metalloproteinases (MMPs), a family of zinc-dependent proteinases, participate in remodeling and degradation of the extracellular matrix proteins. The activity of MMPs is thought to be predominately posttranslationally regulated via proteolytic activation of precursor zymogens or via their naturally occurring endogenous inhibitors. Here, using recombinant MMP-1, we investigated new redox-dependent mechanisms of proteinase activity regulation by low-molecular-weight thiols.

View Article and Find Full Text PDF