Early detection of pulmonary responses to silica aerosol exposure, such as lung inflammation as well as early identification of silicosis initiation, is of great importance in disease prevention of workers. In this study, to early screen the health condition of the workers who are exposed to respirable silica dusts, an immunoassay lab on a chip (LOC) was designed, developed and fully characterized for analyzing Clara cell protein 16 (CC16) in serum which has been considered as one of the potential biomarkers of lung inflammation or lung damage due to the respirable silica dusts. Sandwich immunoassay of CC16 was performed on the LOC developed with a custom-designed portable analyzer using artificial serums spiked with CC16 protein first and then human serums obtained from the coal mine workers exposed to the respirable silica-containing dusts.
View Article and Find Full Text PDFRetraction of 'A new polymer lab-on-a-chip (LOC) based on a microfluidic capillary flow assay (MCFA) for detecting unbound cortisol in saliva' by Vinitha T. U. , , 2020, , 1961-1974, DOI: https://doi.
View Article and Find Full Text PDFUnbound cortisol in saliva, which can be detected with non-invasive sampling, is now considered as one of the most effective biomarkers for the biochemical evaluation of common mental disorders. In this work, a new polymer lab-on-a-chip (LOC) based on a microfluidic capillary flow assay (MCFA) with on-chip dried reagents was newly developed and fully characterized for the detection of unbound cortisol in saliva. The new MCFA device consisted of serially connected microchannels for sample loading, dried detection antibodies, time delay for incubation time control, a spiral reaction chamber for testing, positive and negative controls, and a capillary pump for waste fluid collection.
View Article and Find Full Text PDFThere has been a considerable development in microfluidic based immunodiagnostics over the past few years which has greatly favored the growth of novel point-of-care-testing (POCT). However, the realization of an inexpensive, low-power POCT needs cheap and disposable microfluidic devices that can perform autonomously with minimum user intervention. This work, for the first time, reports the development of a new microchannel capillary flow assay (MCFA) platform that can perform chemiluminescence based ELISA with lyophilized chemiluminescent reagents.
View Article and Find Full Text PDFRespirable crystalline silica (RCS) produced in mining and construction industries can cause life-threatening diseases such as silicosis, lung cancer, and chronic obstructive pulmonary disease (COPD). These diseases could be more effectively treated and prevented if RCS-related biomarkers were identified and measured at an early stage of disease progression, which makes development of a point of care test (POCT) platform extremely desirable for early diagnosis. In this work, a new, highly sensitive lab on a chip (LOC) immunoassay has been designed, developed, and characterized for tumor necrosis factor α (TNF-α), a protein biomarker that causes lung inflammation due to RCS exposure.
View Article and Find Full Text PDFOver the last few years, lateral flow assay (LFA) devices have grown to be the most common point-of-care test (POCT) platform facilitating disease diagnostics in low-resource environments. However, the lack of consistency and the limited sensitivity of these devices often lead to misdiagnosis and generates the need for an alternate approach. A chemiluminescence based microchannel-based lateral flow assay (MLFA) in a POCT platform can result in a much higher sensitivity but involves multiple additional steps of liquid reagents for the sequential execution of the signal amplification protocol.
View Article and Find Full Text PDFA specific double-stranded DNA sensing system is of great interest for diagnostic and other biomedical applications. Zinc finger domains, which recognize double-stranded DNA, can be engineered to form custom DNA-binding proteins for the recognition of specific DNA sequences. As a proof of concept, a sequence-enabled reassembly of a TEM-1 β-lactamase system (SEER-LAC) was previously demonstrated to develop zinc finger protein (ZFP) arrays for the detection of a double-stranded bacterial DNA sequence.
View Article and Find Full Text PDF