Publications by authors named "Stewart S R Jamieson"

Knowledge of the spatial distribution of many polar seabird species is incomplete due to the remoteness of their breeding locations. Here, we compiled a new database of published and unpublished records of all known snow petrel breeding sites. We quantified local environmental conditions at sites by appending indices of climate and substrate, and regional-scale conditions by appending 30 year mean (1992-2021) sea-ice conditions within accessible foraging areas.

View Article and Find Full Text PDF

The East Antarctic Ice Sheet (EAIS) has its origins ca. 34 million years ago. Since then, the impact of climate change and past fluctuations in the EAIS margin has been reflected in periods of extensive vs.

View Article and Find Full Text PDF

The East Antarctic Ice Sheet contains the vast majority of Earth's glacier ice (about 52 metres sea-level equivalent), but is often viewed as less vulnerable to global warming than the West Antarctic or Greenland ice sheets. However, some regions of the East Antarctic Ice Sheet have lost mass over recent decades, prompting the need to re-evaluate its sensitivity to climate change. Here we review the response of the East Antarctic Ice Sheet to past warm periods, synthesize current observations of change and evaluate future projections.

View Article and Find Full Text PDF

Antarctica's contribution to global mean sea level rise has been driven by an increase in ice discharge into the oceans. The rate of change and the mechanisms that drive variability in ice discharge are therefore important to consider in the context of projected future warming. Here, we report observations of both decadal trends and inter-annual variability in ice discharge across the Antarctic Ice Sheet at a variety of spatial scales that range from large drainage basins to individual outlet glacier catchments.

View Article and Find Full Text PDF

Antarctic supraglacial lakes (SGLs) have been linked to ice shelf collapse and the subsequent acceleration of inland ice flow, but observations of SGLs remain relatively scarce and their interannual variability is largely unknown. This makes it difficult to assess whether some ice shelves are close to thresholds of stability under climate warming. Here, we present the first observations of SGLs across the entire East Antarctic Ice Sheet over multiple melt seasons (2014-2020).

View Article and Find Full Text PDF

Supraglacial lakes are important to ice sheet mass balance because their development and drainage has been linked to changes in ice flow velocity and ice shelf disintegration. However, little is known about their distribution on the world's largest ice sheet in East Antarctica. Here, we use ~5 million km of high-resolution satellite imagery to identify >65,000 lakes (>1,300 km) that formed around the peak of the melt season in January 2017.

View Article and Find Full Text PDF

Rapid glacier advance is known to occur by a range of mechanisms. However, although large-scale debris loading has been proposed as a process for causing rapid terminus advance, it has rarely been observed. We use satellite remote sensing data to observe accelerated glacier terminus advance in response to massive supraglacial loading on two glaciers in Kyrgyzstan.

View Article and Find Full Text PDF

The dynamics of ocean-terminating outlet glaciers are an important component of ice-sheet mass balance. Using satellite imagery for the past 40 years, we compile an approximately decadal record of outlet-glacier terminus position change around the entire East Antarctic Ice Sheet (EAIS) marine margin. We find that most outlet glaciers retreated during the period 1974-1990, before switching to advance in every drainage basin during the two most recent periods, 1990-2000 and 2000-2012.

View Article and Find Full Text PDF

The warmest global climates of the past 65 million years occurred during the early Eocene epoch (about 55 to 48 million years ago), when the Equator-to-pole temperature gradients were much smaller than today and atmospheric carbon dioxide levels were in excess of one thousand parts per million by volume. Recently the early Eocene has received considerable interest because it may provide insight into the response of Earth's climate and biosphere to the high atmospheric carbon dioxide levels that are expected in the near future as a consequence of unabated anthropogenic carbon emissions. Climatic conditions of the early Eocene 'greenhouse world', however, are poorly constrained in critical regions, particularly Antarctica.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: