Publications by authors named "Stewart Nuttall"

KAT6A, and its paralog KAT6B, are histone lysine acetyltransferases (HAT) that acetylate histone H3K23 and exert an oncogenic role in several tumor types including breast cancer where KAT6A is frequently amplified/overexpressed. However, pharmacologic targeting of KAT6A to achieve therapeutic benefit has been a challenge. Here we describe identification of a highly potent, selective, and orally bioavailable KAT6A/KAT6B inhibitor CTx-648 (PF-9363), derived from a benzisoxazole series, which demonstrates anti-tumor activity in correlation with H3K23Ac inhibition in KAT6A over-expressing breast cancer.

View Article and Find Full Text PDF

Puromycin and the Streptomyces alboniger-derived puromycin N-acetyltransferase (PAC) enzyme form a commonly used system for selecting stably transfected cultured cells. The crystal structure of PAC has been solved using X-ray crystallography, revealing it to be a member of the GCN5-related N-acetyltransferase (GNAT) family of acetyltransferases. Based on structures in complex with acetyl-CoA or the reaction products CoA and acetylated puromycin, four classes of mutations in and around the catalytic site were designed and tested for activity.

View Article and Find Full Text PDF

Cancer is one of the leading causes of mortality in humans, and recent work has focused on the area of immuno-oncology, in which the immune system is used to specifically target cancerous cells. Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) is an emerging therapeutic target in human cancers owing to its role in degrading cyclic GMP-AMP (cGAMP), an agonist of the stimulator of interferon genes (STING). The available structures of ENPP1 are of the mouse enzyme, and no structures are available with anything other than native nucleotides.

View Article and Find Full Text PDF

Acute myeloid leukaemia (AML) is a heterogeneous disease characterized by transcriptional dysregulation that results in a block in differentiation and increased malignant self-renewal. Various epigenetic therapies aimed at reversing these hallmarks of AML have progressed into clinical trials, but most show only modest efficacy owing to an inability to effectively eradicate leukaemia stem cells (LSCs). Here, to specifically identify novel dependencies in LSCs, we screened a bespoke library of small hairpin RNAs that target chromatin regulators in a unique ex vivo mouse model of LSCs.

View Article and Find Full Text PDF

The WD40-repeat protein WDR5 scaffolds various epigenetic writers and is a critical component of the mammalian SET/MLL histone methyltransferase complex. Dysregulation of the MLL1 catalytic function is associated with mixed-lineage leukemia, and antagonism of the WDR5-MLL1 interaction by small molecules has been proposed as a therapeutic strategy for MLL-rearranged cancers. Small molecule binders of the "WIN" site of WDR5 that cause displacement from chromatin have been additionally implicated to be of broader use in cancer treatment.

View Article and Find Full Text PDF

Gram-positive bacteria utilise class A sortases to coat the surface of their cells with a diversity of proteins that facilitate interactions with their environment and play fundamental roles in cell physiology and virulence. A putative sortase A gene was identified in the genome of the poorly studied meat spoilage bacterium Brochothrix thermosphacta. To understand how this bacterium mediates interactions with its environment, an N-terminal truncated, His-tagged variant of this protein (His6-BtSrtA) was expressed and purified.

View Article and Find Full Text PDF

CXCR4 is a G protein-coupled receptor with excellent potential as a therapeutic target for a range of clinical conditions, including stem cell mobilization, cancer prognosis and treatment, fibrosis therapy, and HIV infection. We report here the development of a fully human single-domain antibody-like scaffold termed an "i-body," the engineering of which produces an i-body library possessing a long complementarity determining region binding loop, and the isolation and characterization of a panel of i-bodies with activity against human CXCR4. The CXCR4-specific i-bodies show antagonistic activity in a range of in vitro and in vivo assays, including inhibition of HIV infection, cell migration, and leukocyte recruitment but, importantly, not the mobilization of hematopoietic stem cells.

View Article and Find Full Text PDF

The assembly and anchorage of various pathogenic proteins on the surface of Gram-positive bacteria is mediated by the sortase family of enzymes. These cysteine transpeptidases catalyze a unique sorting signal motif located at the C-terminus of their target substrate and promote the covalent attachment of these proteins onto an amino nucleophile located on another protein or on the bacterial cell wall. Each of the six distinct classes of sortases displays a unique biological role, with sequential activation of multiple sortases often observed in many Gram-positive bacteria to decorate their peptidoglycans.

View Article and Find Full Text PDF

Self association of the amyloid-β (Aβ42) peptide into oligomers, high molecular weight forms, fibrils and ultimately neuritic plaques, has been correlated with progressive cognitive decline in Alzheimer's disease. Thus, insights into the drivers of the aggregation pathway have the capacity to significantly contribute to our understanding of disease mechanism. Functional assays and a three-dimensional crystal structure of the P3 amyloidogenic region 18-41 of Aβ were used to identify residues important in self-association and to design novel non-aggregating variants of the peptide.

View Article and Find Full Text PDF

The Sortase A (SrtA) enzyme from Staphylococcus aureus catalyses covalent attachment of protein substrates to pentaglycine cross-bridges in the Gram positive bacterial cell wall. In vitro SrtA-mediated protein ligation is now an important protein engineering tool for conjugation of substrates containing the LPXTGX peptide recognition sequence to oligo-glycine nucleophiles. In order to explore the use of alternative nucleophiles in this system, five different rhodamine-labelled compounds, with N-terminal nucleophilic amino acids, triglycine, glycine, and lysine, or N-terminal non-amino acid nucleophiles ethylenediamine and cadaverine, were synthesized.

View Article and Find Full Text PDF

Alzheimer's disease is the most common form of dementia in humans and is related to the accumulation of the amyloid-β (Aβ) peptide and its interaction with metals (Cu, Fe, and Zn) in the brain. Crystallographic structural information about Aβ peptide deposits and the details of the metal-binding site is limited owing to the heterogeneous nature of aggregation states formed by the peptide. Here, we present a crystal structure of Aβ residues 1-16 fused to the N-terminus of the Escherichia coli immunity protein Im7, and stabilized with the fragment antigen binding fragment of the anti-Aβ N-terminal antibody WO2.

View Article and Find Full Text PDF

Immunoglobulin new antigen receptors (IgNARs) from sharks are a distinct class of immune receptors, consisting of homodimers with no associated light chains. Antigen binding is encapsulated within single VNAR immunoglobulin domains of 13-14 kDa in size. This small size and single domain format means that they exhibit considerable stability and are readily produced in heterologous protein expression systems.

View Article and Find Full Text PDF

Sortase-mediated protein ligation is a biological covalent conjugation system developed from the enzymatic cell wall display mechanism found in Staphylococcus aureus. This three-component system requires: (i) purified Sortase A (SrtA) enzyme; (ii) a substrate containing the LPXTG peptide recognition sequence; and (iii) an oligo-glycine acceptor molecule. We describe cloning of the single-chain antibody sc528, which binds to the extracellular domain of the epidermal growth factor receptor (EGFR), from the parental monoclonal antibody and incorporation of a LPETGG tag sequence.

View Article and Find Full Text PDF

One method of laboratory- or field-based testing for anthrax is detection of Bacillus anthracis spores by high-affinity, high specificity binding reagents. From a pool of monoclonal antibodies, we selected one such candidate (A4D11) with high affinity for tBclA, a truncated version of the B. anthracis exosporium protein BclA.

View Article and Find Full Text PDF

Alzheimer's disease is a progressive neurodegenerative disorder associated with the presence of amyloid-β (Aβ) peptide fibrillar plaques in the brain. However, current evidence suggests that soluble nonfibrillar Aβ oligomers may be the major drivers of Aβ-mediated synaptic dysfunction. Structural information on these Aβ species has been very limited because of their noncrystalline and unstable nature.

View Article and Find Full Text PDF

The Hepatitis B virus precore protein is processed in the endoplasmic reticulum (ER) into secreted hepatitis B e antigen (HBeAg), which acts as an immune tolerogen to establish chronic infection. Downregulation of secreted HBeAg should improve clinical outcome, as patients who effectively respond to current treatments (IFN-α) have significantly lower serum HBeAg levels. Here, we describe a novel reagent, a single variable domain (V(NAR)) of the shark immunoglobulin new antigen receptor (IgNAR) antibodies.

View Article and Find Full Text PDF

Antibody generation by phage display and related in vitro display technologies routinely yields large panels of clones detected in primary end-point screenings such as enzyme-linked immunosorbent assay (ELISA). However, for the development of clinical lead candidates, rapid determination of secondary characteristics such as kinetics and thermodynamics is of nearly equal importance. Surface plasmon resonance-based biosensors are ideal tools for carrying out such high-throughput secondary screenings, allowing preliminary but confident ranking and identification of lead clones.

View Article and Find Full Text PDF

Protein scaffolds represent a new generation of universal binding frameworks for use as future immunopharmaceuticals to complement the expanding repertoire of therapeutic monoclonal antibodies. Here, we review recent literature describing advances in protein scaffold development, including efforts to engineer the minimal immunoglobulin-based binding-domain and molecular library design. Several diverse protein folds are currently under development on the basis of modular construction, a strategy also observed in families of naturally evolved immune receptors.

View Article and Find Full Text PDF

Apical membrane antigen 1 (AMA1) is essential for invasion of erythrocytes and hepatocytes by Plasmodium parasites and is a leading malarial vaccine candidate. Although conventional antibodies to AMA1 can prevent such invasion, extensive polymorphisms within surface-exposed loops may limit the ability of these AMA1-induced antibodies to protect against all parasite genotypes. Using an AMA1-specific IgNAR single-variable-domain antibody, we performed targeted mutagenesis and selection against AMA1 from three P.

View Article and Find Full Text PDF

Mimotopes mimic the three-dimensional topology of an antigen epitope, and are frequently recognized by antibodies with affinities comparable to those obtained for the original antibody-antigen interaction. Peptides and anti-idiotypic antibodies are two classes of protein mimotopes that mimic the topology (but not necessarily the sequence) of the parental antigen. In this study, we combine these two classes by selecting mimotopes based on single domain IgNAR antibodies, which display exceptionally long CDR3 loop regions (analogous to a constrained peptide library) presented in the context of an immunoglobulin framework with adjacent and supporting CDR1 loops.

View Article and Find Full Text PDF

Spores of Bacillus anthracis, the causative agent of anthrax, are enclosed by an exosporium, which consists of a basal layer surrounded by a nap of hair-like filaments. The major structural component of the filaments is called BclA, which comprises a central collagen-like region (CLR) and a globular C-terminal domain. Here, the entire CLR coding sequence of BclA was removed, and the resulting protein (tBclA) produced in Escherichia coli.

View Article and Find Full Text PDF

We have employed a novel mutagenesis system, which utilizes an error-prone RNA dependent RNA polymerase from Qbeta bacteriophage, to create a diverse library of single domain antibody fragments based on the shark IgNAR antibody isotype. Coupling of these randomly mutated mRNA templates directly to the translating ribosome allowed in vitro selection of affinity matured variants showing enhanced binding to target, the apical membrane antigen 1 (AMA1) from Plasmodium falciparum. One mutation mapping to the IgNAR CDR1 loop was not readily additive to other changes, a result explained by structural analysis of aromatic interactions linking the CDR1, CDR3, and Ig framework regions.

View Article and Find Full Text PDF

Immunoglobulin new antigen receptors (IgNARs) are unique single domain antibodies found in the serum of sharks. The individual variable (VNAR) domains bind antigen independently and are candidates for the smallest antibody-based immune recognition units (approximately 13 kDa). Here, we first isolated and sequenced the cDNA of a mature IgNAR antibody from the spotted wobbegong shark (Orectolobus maculatus) and confirmed the independent nature of the VNAR domains by dynamic light scattering.

View Article and Find Full Text PDF

Protein scaffolds derived from non-immunoglobulin sources are increasingly being adapted and engineered to provide unique binding molecules with a diverse range of targeting specificities. The ColE7 immunity protein (Im7) from Escherichia coli is potentially one such molecule, as it combines the advantages of (i) small size, (ii) stability conferred by a conserved four anti-parallel alpha-helical framework and (iii) availability of variable surface loops evolved to inactivate members of the DNase family of bacterial toxins, forming one of the tightest known protein-protein interactions. Here we describe initial cloning and protein expression of Im7 and its cognate partner the 15 kDa DNase domain of the colicin E7.

View Article and Find Full Text PDF

The new antigen receptor (IgNAR) antibodies from sharks are disulphide bonded dimers of two protein chains, each containing one variable and five constant domains. Three types of IgNAR variable domains have been discovered, with Type 3 appearing early in shark development and being overtaken by the antigen-driven affinity-matured Type 1 and 2 response. Here, we have determined the first structure of a naturally occurring Type 2 IgNAR variable domain, and identified the disulphide bond that links and stabilizes the CDR1 and CDR3 loops.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiong6c9n65m3stccfbdt0gttpkdj2sa21mq): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once