Implant subsidence into the underlying trabecular bone is a common problem in orthopaedic surgeries; however, the ability to pre-operatively predict implant subsidence remains limited. Current state-of-the-art computational models for predicting subsidence have issues addressing this clinical problem, often resulting from the size and complexity of existing subject-specific, image-based finite element (FE) models. The current study aimed to develop a simplified approach to FE modeling of subject-specific trabecular bone indentation resulting from implant penetration.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
November 2024
Pessaries are removable gynecological prosthetic devices that provide mechanical support for temporary or long-term symptom relief of pelvic floor disorders, such as pelvic organ prolapse and stress urinary incontinence. To date, limited mechanical tests have been performed on physical pessary designs to characterize their behaviour under load; however, custom pessary manufacturing is expensive and time consuming. As an alternative, finite element (FE) modeling can provide detailed numerical insight into the response of a pessary design under load but to date has seen limited application, with little data available for pessary silicone materials.
View Article and Find Full Text PDFGlobal Spine J
June 2024
Study Design: In-vitro cadaveric biomechanical study.
Objectives: Long posterior spinal fusion is a standard treatment for adult spinal deformity. However, these rigid constructs are known to alter motion and stress to the adjacent non-instrumented vertebrae, increasing the risk of proximal junctional kyphosis (PJK).
BMC Musculoskelet Disord
April 2024
Background: Non-contact anterior cruciate ligament (ACL) injuries are a major concern in sport-related activities due to dynamic knee movements. There is a paucity of finite element (FE) studies that have accurately replicated the knee geometry, kinematics, and muscle forces during dynamic activities. The objective of this study was to develop and validate a knee FE model and use it to quantify the relationships between sagittal plane knee kinematics, kinetics and the resulting ACL strain.
View Article and Find Full Text PDFComputational human body models (HBMs) can identify potential injury pathways not easily accessible through experimental studies, such as whiplash induced injuries. However, previous computational studies investigating neck response to simulated impact conditions have neglected the effect of pre-impact neck posture and muscle pre-tension on the intervertebral kinematics and tissue-level response. The purpose of the present study was addressing this knowledge gap using a detailed neck model subjected to simulated low-acceleration rear impact conditions, towards improved intervertebral kinematics and soft tissue response for injury assessment.
View Article and Find Full Text PDFMetatarsal fractures represent the most common traumatic foot injury; however, metatarsal fracture thresholds remain poorly characterized, which affects performance targets for protective footwear. This experimental study investigated impact energies, forces, and deformations to characterize metatarsal fracture risk for simulated in situ workplace impact loading. A drop tower setup conforming to ASTM specifications for testing impact resistance of metatarsal protective footwear applied a target impact load (22-55 J) to 10 cadaveric feet.
View Article and Find Full Text PDFBrain and spinal cord injuries have devastating consequences on quality of life but are challenging to assess experimentally due to the traumatic nature of such injuries. Finite element human body models (HBM) have been developed to investigate injury but are limited by a lack of biofidelic spinal cord implementation. In many HBM, brain models terminate with a fixed boundary condition at the brain stem.
View Article and Find Full Text PDFThis study developed a finite element (FE) model of simulated locking plate fixation to examine the strain response following supracondylar femoral plate attachment and under compressive loading. An implicit FE model of a synthetic femur with a distal fracture gap stabilized with a lateral plate was evaluated following attachment and 500 N loading, considering locking and non-locking proximal screws configurations. Screw pre-tension values of 60 N for both distal and proximal non-locking screws yielded good agreement with plate experimental strain data in attached (unloaded) and loaded conditions.
View Article and Find Full Text PDFSpinal cord impacts can have devastating consequences. Computational models can investigate such impacts but require biofidelic numerical representations of the neural tissues and fluid-structure interaction with cerebrospinal fluid. Achieving this biofidelity is challenging, particularly for efficient implementation of the cerebrospinal fluid in full computational human body models.
View Article and Find Full Text PDFThe data included in this article provides additional supporting information on our publication (McGregor et al. [1]) on the review of the natural lattice architecture in human bone and its implication towards titanium (Ti) lattice design for laser powder bed fusion and electron beam powder bed fusion. For this work, X-ray computed tomography was deployed to understand and visualize a Ti-6Al-4V lattice structure manufactured by laser powder bed fusion.
View Article and Find Full Text PDFAccidental foot injuries including metatarsal fractures commonly result from compressive loading. The ability of personal protective equipment to prevent these traumatic injuries depends on the understanding of metatarsal fracture tolerance. However, the in situ fracture tolerance of the metatarsals under direct compressive loading to the foot's dorsal surface remains unexplored, even though the metatarsals are the most commonly fractured bones in the foot.
View Article and Find Full Text PDFFinite Element (FE) modelling of spinal cord response to impact can provide unique insights into the neural tissue response and injury risk potential. Yet, contemporary human body models (HBMs) used to examine injury risk and prevention across a wide range of impact scenarios often lack detailed integration of the spinal cord and surrounding tissues. The integration of a spinal cord in contemporary HBMs has been limited by the need for a continuum-level model owing to the relatively large element size required to be compatible with HBM, and the requirement for model development based on published material properties and validation using relevant non-linear material data.
View Article and Find Full Text PDFActive neck musculature plays an important role in the response of the head and neck during impact and can affect the risk of injury. Finite element Human Body Models (HBM) have been proposed with open and closed-loop controllers for activation of muscle forces; however, controllers are often calibrated to specific experimental loading cases, without considering the intrinsic role of physiologic muscle reflex mechanisms under different loading conditions. This study aimed to develop a single closed-loop controller for neck muscle activation in a contemporary male HBM based on known reflex mechanisms and assess how this approach compared to current open-loop controllers across a range of impact directions and severities.
View Article and Find Full Text PDFPurpose: Neuroimaging provides great utility in complex spinal surgeries, particularly when anatomical geometry is distorted by pathology (tumour, degeneration, etc.). Spinal cord MRI diffusion tractography can be used to generate streamlines; however, it is unclear how well they correspond with white matter tract locations along the cord microstructure.
View Article and Find Full Text PDFBackground: Physiotherapy is essential for the successful rehabilitation of common shoulder injuries and following shoulder surgery. Patients may receive some training and supervision for shoulder physiotherapy through private pay or private insurance, but they are typically responsible for performing most of their physiotherapy independently at home. It is unknown how often patients perform their home exercises and if these exercises are performed correctly without supervision.
View Article and Find Full Text PDFNeck muscle activation is increasingly important for accurate prediction of occupant response in automotive impact scenarios and occupant excursion resulting from active safety systems such as autonomous emergency braking. Muscle activation and optimization in frontal impact scenarios using computational Human Body Models have not been investigated over the broad range of accelerations relevant to these events. This study optimized the muscle activation of a contemporary finite element model of the human head and neck for human volunteer experiments over a range of frontal impact severities (2 g to 15 g).
View Article and Find Full Text PDFObjective: The cortical bone trajectory (CBT) technique for pedicle screw placement has gained popularity among spinal surgeons. It has been shown biomechanically to provide better fixation and improved pullout strength compared to a traditional pedicle screw trajectory. The CBT technique also allows for a less invasive approach for fusion and may have lower incidence of adjacent-level disease.
View Article and Find Full Text PDFObjective: Participation in a physical therapy program is considered one of the greatest predictors of successful conservative management of common shoulder disorders. However, adherence to these protocols is often poor and typically worse for unsupervised home exercise programs. Currently, there are limited tools available for objective measurement of adherence in the home setting.
View Article and Find Full Text PDFObjectives: Assess the effect of proximal screw configuration on the strain in lateral plating of a simulated comminuted supracondylar femur fracture.
Methods: Fractures were simulated in 12 synthetic femurs by removing a 200-mm section of bone, located 60 mm from the intercondylar fossa and repaired using a 16-hole locked lateral plate instrumented with 8 uniaxial strain gauges. Three proximal screw type configurations were evaluated: (1) 4 nonlocking screws, (2) 4 locking screws, and (3) a hybrid configuration of 2 nonlocking screws flanked by a locking screw at each end of the proximal fragment.
Objectives: This biomechanical study compared Vancouver B1 periprosthetic femur fractures fixed with either a locking plate and anterior allograft strut construct or an equivalent locking plate with locking attachment plates construct in paired cadaveric specimens.
Methods: After 9 pairs of cadaveric femora were implanted with a cemented primary total hip arthroplasty, an oblique osteotomy was created distal to the cement mantle. Femora underwent fixation with either: (1) a locking plate with anterior strut allograft (locking compression plating (LCP)-Allograft) or (2) a locking plate with 2 locking attachment plates (LAPs) (LCP-LAP).
In biomechanical studies examining joint kinematics the most common measurement is range of motion (ROM), yet other techniques, such as the finite helical axis (FHA), may elucidate the changes in the 3D motion pathology more effectively. One of the deficiencies with the FHA technique is in quantifying the axes generated throughout a motion sequence. This study attempted to solve this issue via a computational geometric technique known as the alpha shape, which bounds a set of point data within a closed boundary similar to a convex hull.
View Article and Find Full Text PDFThermal cycling is a temperature modulation process developed to improve the performance, durability and longevity of materials. This process has been successfully utilized in the automotive, aeronautic and manufacturing industries. Surgical cutting tools undergo cyclical loading and generally fail by dulling, suggesting that thermal cycling may improve their performance and longevity.
View Article and Find Full Text PDFBackground Context: Anterior cervical discectomy and fusion with plating (ACDFP) is commonly used for the treatment of distractive-flexion cervical spine injuries. Despite the prevalence of ACDFP, there is little biomechanical evidence for graft height selection in the unstable trauma scenario.
Purpose: This study aimed to investigate whether changes in graft height affect the kinematics of instrumented ACDFP C5-C6 motion segments in the context of varying degrees of simulated facet injuries.
Finite helical axes (FHAs) are a potentially effective tool for joint kinematic analysis. Unfortunately, no straightforward guidelines exist for calculating accurate FHAs using prepackaged six degree-of-freedom (6 DOF) rigid body trackers. Thus, this study aimed to: (1) describe a protocol for calculating FHA parameters from 6 DOF rigid body trackers using the screw matrix and (2) to maximize the number of accurate FHAs generated from a given data set using a moving window analysis.
View Article and Find Full Text PDFBackground: Unilateral cervical spine facet injuries encompass a wide spectrum, including subluxations, dislocations, and fractures, and the instability produced varies greatly. The extent of anatomical disruption secondary to a unilateral facet injury is poorly understood, and few biomechanical studies have quantified the associated kinematics. The purpose of this study was to develop an experimental method that reliably produces an impending unilateral facet dislocation (perched facet) in cadaveric cervical spines and to identify the soft-tissue damage and resulting changes in cervical spine range of motion and neutral zone associated with this injury.
View Article and Find Full Text PDF