Publications by authors named "Stewart Haslinger"

Ultrasound backscatter coefficient (BSC) measurement is a method for assessing tissue morphology that can inform on pathologies such as cancer. The BSC measurement is, however, limited by the accuracy with which the investigator can normalise their results to account for frequency dependent effects of diffraction and attenuation whilst performing such measurements. We propose a simulation-based approach to investigate the potential sources of error in assessing the BSC.

View Article and Find Full Text PDF

The phenomenon of Rayleigh wave attenuation due to surface roughness has been well studied theoretically in the literature. Three scattering regimes describing it have been identified-the Rayleigh (long wavelength), stochastic (medium wavelength), and geometric (short wavelength)-with the attenuation coefficient exhibiting a different behavior in each. Here, in an extension to our previous work, we gain further insight with regard to the existing theory, in three dimensions, using finite element (FE) modeling, under a unified approach, where the same FE modeling techniques are used regardless of the scattering regime.

View Article and Find Full Text PDF

The phenomenon of the reduction in the propagation speed of an ultrasonic wave when it travels through a fatigue zone has been well studied in the literature. Additionally, it has been established that shear waves are more severely affected by the presence of such a zone, compared with longitudinal waves. Our study utilises these phenomena to develop a method able to characterise the fatigue state of steel pipes.

View Article and Find Full Text PDF

Rayleigh waves are well known to attenuate due to scattering when they propagate over a rough surface. Theoretical investigations have derived analytical expressions linking the attenuation coefficient to statistical surface roughness parameters, namely, the surface's root mean squared height and correlation length and the Rayleigh wave's wavenumber. In the literature, three scattering regimes have been identified-the geometric (short wavelength), stochastic (short to medium wavelength), and Rayleigh (long wavelength) regimes.

View Article and Find Full Text PDF