Publications by authors named "Stewart Gault"

Although a low temperature limit for life has not been established, it is thought that there exists a physical limit imposed by the onset of intracellular vitrification, typically occurring at ~-20 °C for unicellular organisms. Here, we show, through differential scanning calorimetry, that molar concentrations of magnesium perchlorate can depress the intracellular vitrification point of Bacillus subtilis cells to temperatures much lower than those previously reported. At 2.

View Article and Find Full Text PDF

Elucidating the details of the formation, stability, interactions, and reactivity of biomolecular systems under extreme environmental conditions, including high salt concentrations in brines and high osmotic and high hydrostatic pressures, is of fundamental biological, astrobiological, and biotechnological importance. Bacteria and archaea are able to survive in the deep ocean or subsurface of Earth, where pressures of up to 1 kbar are reached. The deep subsurface of Mars may host high concentrations of ions in brines, such as perchlorates, but we know little about how these conditions and the resulting osmotic stress conditions would affect the habitability of such environments for cellular life.

View Article and Find Full Text PDF

High pressure deep subsurface environments of Mars may harbor high concentrations of dissolved salts, such as perchlorates, yet we know little about how these salts influence the conditions for life, particularly in combination with high hydrostatic pressure. We investigated the effects of high magnesium perchlorate concentrations compared to sodium and magnesium chloride salts and high pressure on the conformational dynamics and stability of double-stranded B-DNA and, as a representative of a non-canonical DNA structure, a DNA-hairpin (HP), whose structure is known to be rather pressure-sensitive. To this end, fluorescence spectroscopies including single-molecule FRET methodology were applied.

View Article and Find Full Text PDF

The interactions of ligands with nucleic acids are central to numerous reactions in the biological cell. How such reactions are affected by harsh environmental conditions such as low temperatures, high pressures, and high concentrations of destructive ions is still largely unknown. To elucidate the ions' role in shaping habitability in extraterrestrial environments and the deep subsurface of Earth with respect to fundamental biochemical processes, we investigated the effect of selected salts (MgCl, MgSO, and Mg(ClO)) and high hydrostatic pressure (relevant for the subsurface of that planet) on the complex formation between tRNA and the ligand ThT.

View Article and Find Full Text PDF

Studies of salt effects on enzyme activity have typically been conducted at standard temperatures and pressures, thus missing effects which only become apparent under non-standard conditions. Here we show that perchlorate salts, which are found pervasively on Mars, increase the activity of α-chymotrypsin at low temperatures. The low temperature activation is facilitated by a reduced enthalpy of activation owing to the destabilising effects of perchlorate salts.

View Article and Find Full Text PDF

Protein-ligand interactions are fundamental to all biochemical processes. Generally, these processes are studied at ambient temperature and pressure conditions. We investigated the binding of the small ligand 8-anilinonaphthalene-1-sulfonic acid (ANS) to the multifunctional protein bovine serum albumin (BSA) at ambient and low temperatures and at high pressure conditions, in the presence of ions associated with the surface and subsurface of Mars, including the chaotropic perchlorate ion.

View Article and Find Full Text PDF

Lipid membranes are a key component of contemporary living systems and are thought to have been essential to the origin of life. Most research on membranes has focused on situations restricted to ambient physiological or benchtop conditions. However, the influence of more extreme conditions, such as the deep subsurface on Earth or extraterrestrial environments are less well understood.

View Article and Find Full Text PDF

Understanding the characteristics that define temperature-adapted enzymes has been a major goal of extremophile enzymology in recent decades. In the present study, we explore these characteristics by comparing psychrophilic, mesophilic, and thermophilic enzymes. Through a meta-analysis of existing data, we show that psychrophilic enzymes exhibit a significantly larger gap (Tg) between their optimum and melting temperatures compared with mesophilic and thermophilic enzymes.

View Article and Find Full Text PDF

The presence of perchlorate ions on Mars raises the question of how these ions influence the biochemistry of any contaminant life introduced into the martian environment, or what selection pressures perchlorate ions exert on any environment that contains these ions, such as the Atacama Desert. In this study, we investigated the structure, stability, and enzyme activity of the model enzyme α-chymotrypsin in the presence of five Mars relevant salts, MgSO, MgCl, Mg(ClO), Ca(ClO), and NaClO. We found that all the perchlorate salts reduced the enzyme activity of α-chymotrypsin in a concentration-dependent manner, with Mg(ClO) and Ca(ClO) having the greatest effect.

View Article and Find Full Text PDF

Deep subsurface environments can harbour high concentrations of dissolved ions, yet we know little about how this shapes the conditions for life. We know even less about how the combined effects of high pressure influence the way in which ions constrain the possibilities for life. One such ion is perchlorate, which is found in extreme environments on Earth and pervasively on Mars.

View Article and Find Full Text PDF