Publications by authors named "Stewart Fabb"

We investigated mRNA vaccines encoding a membrane-anchored receptor-binding domain (RBD), each a fusion of a variant RBD, the transmembrane (TM) and cytoplasmic tail fragments of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. In naive mice, RBD-TM mRNA vaccines against SARS-CoV-2 variants induced strong humoral responses against the target RBD. Multiplex surrogate viral neutralization (sVNT) assays revealed broad neutralizing activity against a range of variant RBDs.

View Article and Find Full Text PDF

Existing antibodies (Abs) have varied effects on humoral immunity during subsequent infections. Here, we leveraged in vivo systems that allow precise control of antigen-specific Abs and B cells to examine the impact of Ab dose, affinity, and specificity in directing B cell activation and differentiation. Abs competing with the B cell receptor (BCR) epitope showed affinity-dependent suppression.

View Article and Find Full Text PDF

Background & Aims: New antiviral approaches that target multiple aspects of the HBV replication cycle to improve rates of functional cure are urgently required. HBV RNA represents a novel therapeutic target. Here, we programmed CRISPR-Cas13b endonuclease to specifically target the HBV pregenomic RNA and viral mRNAs in a novel approach to reduce HBV replication and protein expression.

View Article and Find Full Text PDF
Article Synopsis
  • This Phase I trial tested two SARS-CoV-2 booster vaccines targeting the beta variant, evaluating their effectiveness and safety in 76 adults already triple vaccinated.
  • Both vaccines demonstrated a good safety profile, with mild to moderate side effects, and showed strong immune responses, particularly at higher doses, against various variants including recent omicron subvariants.
  • The study found both vaccines were effective at boosting antibody responses and T cell activation, comparable to existing licensed vaccines.
View Article and Find Full Text PDF

Beta-adrenergic blockade has been associated with improved cancer survival in patients with triple-negative breast cancer (TNBC), but the mechanisms of these effects remain unclear. In clinical epidemiological analyses, we identified a relationship between beta-blocker use and anthracycline chemotherapy in protecting against TNBC progression, disease recurrence, and mortality. We recapitulated the effect of beta-blockade on anthracycline efficacy in xenograft mouse models of TNBC.

View Article and Find Full Text PDF

Specialized proresolving mediators (SPMs) and their cognate G protein-coupled receptors are implicated in autoimmune disorders, including chronic inflammation, rheumatoid arthritis, systemic scleroderma, and lupus erythematosus. To date, six G protein-coupled receptors (GPCRs) have been paired with numerous endogenous and synthetic ligands. However, the function and downstream signaling of these receptors remains unclear.

View Article and Find Full Text PDF

Introduction: A potential role for the orphan G protein-coupled receptor, GPR21, in linking immune cell infiltration into tissues and obesity-induced insulin resistance has been proposed, although limited studies in mice are complicated by non-selective deletion of .

Research Design And Methods: We hypothesized that a -selective knockout mouse model, coupled with type 2 diabetes patient samples, would clarify these issues and enable clear assessment of GPR21 as a potential therapeutic target.

Results: High-fat feeding studies in mice revealed improved glucose tolerance and modest changes in inflammatory gene expression.

View Article and Find Full Text PDF

Adenoviruses contain dsDNA covalently linked to a terminal protein (TP) at the 5'end. TP plays a pivotal role in replication and long-lasting infectivity. TP has been reported to contain a nuclear localisation signal (NLS) that facilitates its import into the nucleus.

View Article and Find Full Text PDF

Phenotyping of Gprc6a KO mice has shown that this promiscuous class C G protein coupled receptor is variously involved in regulation of metabolism, inflammation and endocrine function. Such effects are described as mediated by extracellular calcium, L-amino acids, the bone-derived peptide osteocalcin (OCN) and the male hormone testosterone, introducing the concept of a bone-energy-metabolism-reproduction functional crosstalk mediated by GPRC6A. However, whilst the calcium and L-amino acid-sensing properties of GPRC6A are well established, verification of activity of osteocalcin at both human and mouse GPRC6A in vitro has proven somewhat elusive.

View Article and Find Full Text PDF

PITX3 expression is confined to adult midbrain dopaminergic (mDA) neurons. In this study we describe the generation and basic functional characteristics of mDA neurons derived from a human pluripotent stem cell (hPSC) line expressing eGFP under the control of the PITX3 promoter. Flow cytometry showed that eGFP was evident in 15% of the neuron population at day 12 of differentiation and this level was maintained until at least day 80.

View Article and Find Full Text PDF

One major limitation with current human embryonic stem cell (ESC) differentiation protocols is the generation of heterogeneous cell populations. These cultures contain the cells of interest, but are also contaminated with undifferentiated ESCs, non-neural derivatives and other neuronal subtypes. This limits their use in in vitro and in vivo applications, such as in vitro modeling for drug discovery or cell replacement therapy.

View Article and Find Full Text PDF

The identification of small molecules capable of directing pluripotent cell differentiation towards specific lineages is highly desirable to both reduce cost, and increase efficiency. Within neural progenitors, LIM homeobox transcription factor 1 alpha (Lmx1a) is required for proper development of roof plate and cortical hem structures of the forebrain, as well as the development of floor plate and midbrain dopaminergic neurons. In this study we generated homologous recombinant cell lines expressing either luciferase or β-lactamase under the control of the Lmx1a promoter, and used these cell lines to investigate kinase-mediated regulation of Lmx1a activity during neuronal differentiation.

View Article and Find Full Text PDF

LIM homeobox transcription factor 1 alpha (Lmx1a) is required for the development of midbrain dopaminergic neurons, roof plate formation, and cortical hem development. We generated a reporter embryonic stem cell (ESC) line for Lmx1a and used it to track differentiation and extract neural progenitors from differentiating mouse ESCs. Lmx1a(+) cells gave rise to functional cortical upper layer GABAergic neurons or dopaminergic neurons depending on the culture conditions used for differentiation.

View Article and Find Full Text PDF

Neural stem (NS) cells are multipotent cells defined by their capacity to proliferate and differentiate into all neuronal and glial phenotypes. NS cells can be obtained from specific regions of the adult brain, or generated from embryonic stem cells (ESCs). NS cells differentiate into neural progenitor (NP) cells and subsequently neural precursors, as transient steps towards terminal differentiation into specific mature neuronal or glial phenotypes.

View Article and Find Full Text PDF

Myeloproliferative syndromes (MPS) are a heterogeneous subclass of nonlymphoid hematopoietic neoplasms which are considered to be intrinsic to hematopoietic cells. The causes of MPS are largely unknown. Here, we demonstrate that mice deficient for retinoic acid receptor gamma (RARgamma), develop MPS induced solely by the RARgamma-deficient microenvironment.

View Article and Find Full Text PDF

Hematopoietic stem cells (HSCs) sustain lifelong production of all blood cell types through finely balanced divisions leading to self-renewal and differentiation. Although several genes influencing HSC self-renewal have been identified, to date no gene has been described that, when activated, enhances HSC self-renewal and, when inactivated [corrected] promotes HSC differentiation. We observe that the retinoic acid receptor (RAR)gamma is selectively expressed in primitive hematopoietic precursors and that the bone marrow of RARgamma knockout mice exhibit markedly reduced numbers of HSCs associated with increased numbers of more mature progenitor cells compared with wild-type mice.

View Article and Find Full Text PDF

The ability to transfer the dystrophin gene stably to the skeletal muscle of DMD patients is a major confounding issue in establishing an effective gene therapy for this disease. To overcome this problem, we have examined the ability of muscle fibres from mdx mice to act as in situ factories of retroviral vector production. Tibialis anterior (TA) muscles from 4-week-old mdx mice were injected with an adenoviral vector expressing LacZ within a retroviral expression cassette (AdLZIN).

View Article and Find Full Text PDF

Duchenne muscular dystrophy is a severe life-threatening X-linked recessive disorder, caused by mutations in the dystrophin gene, for which currently there is no effective treatment. Because of the large size of the dystrophin cDNA (14 kb) this precluded it from being used in early adenovirus- or retrovirus-based gene therapy vectors. However, some therapeutic success has been achieved in mdx mice using adenovirus- and retrovirus-mediated transfer of a 6.

View Article and Find Full Text PDF