Water scarcity footprinting now has a consensual life cycle impact assessment indicator recommended by the UNEP/SETAC Life Cycle Initiative called AWaRe. It was used in this study to calculate the water scarcity footprint of New Zealand (NZ) milk produced in two contrasting regions; "non-irrigated moderate rainfall" (Waikato) and "irrigated low rainfall" (Canterbury). Two different spatial and temporal resolutions for the inventory flows and characterisation factors (CFs) were tested and compared: country and annual vs.
View Article and Find Full Text PDFBackground: The main source of nitrogen (N) leaching from grazed pastures is animal urine with a high N deposition rate (i.e. per urine patch), particularly between late summer and early winter.
View Article and Find Full Text PDFIntegration of a restricted grazing regime in winter with the use of a nitrification inhibitor can potentially reduce N2O emissions from grazed pasture systems. A three year field study was conducted to compare annual N2O emission rates from a "tight nitrogen" grazed farmlet with those from a control farmlet. The control farmlet was managed under a conventional rotational all-year grazing regime, while the "tight nitrogen" farmlet was under a similar grazing regime, except during winter and early spring seasons when cows grazed for about 6h per day.
View Article and Find Full Text PDFMeasurements of some of the main internal N-cycling processes in soil were obtained by labelling the inorganic N pool with the stable isotope of nitrogen ((15)N). The (15)N mean pool dilution technique, combined with other field measurements, enabled gross and net N-mineralization rates to be resolved in grassland soils, which had previously either received fertilizer N (F), or had remained unfertilized (U) for many years. The two soils were subdivided into plots that received N at different time intervals (over 3 weeks), prior to (15)N measurements being made.
View Article and Find Full Text PDF