Ensuring an adequate food supply and enough energy to sustainably support future global populations will require enhanced productivity from plants. Oilseeds can help address these needs; but the fatty acid composition of seed oils is not always optimal, and higher yields are required to meet growing demands. Quantitative approaches including metabolic flux analysis can provide insights on unexpected metabolism (i.
View Article and Find Full Text PDFACYL CARRIER PROTEIN4 (ACP4) is the most abundant ACP isoform in Arabidopsis (Arabidopsis thaliana) leaves and acts as a scaffold for de novo fatty acid biosynthesis and as a substrate for acyl-ACP-utilizing enzymes. Recently, ACP4 was found to interact with a protein-designated plastid RHOMBOID LIKE10 (RBL10) that affects chloroplast monogalactosyldiacylglycerol (MGDG) biosynthesis, but the cellular function of this interaction remains to be explored. Here, we generated and characterized acp4 rbl10 double mutants to explore whether ACP4 and RBL10 directly interact in influencing chloroplast lipid metabolism.
View Article and Find Full Text PDFCentral metabolism produces amino and fatty acids for protein and lipids that establish seed value. Biosynthesis of storage reserves occurs in multiple organelles that exchange central intermediates including two essential metabolites, malate, and pyruvate that are linked by malic enzyme. Malic enzyme can be active in multiple subcellular compartments, partitioning carbon and reducing equivalents for anabolic and catabolic requirements.
View Article and Find Full Text PDFThe bacterial cell membrane is an interface for cell envelope synthesis, protein secretion, virulence factor assembly, and a target for host cationic antimicrobial peptides (CAMPs). To resist CAMP killing, several Gram-positive pathogens encode the multiple peptide resistance factor (MprF) enzyme that covalently attaches cationic amino acids to anionic phospholipids in the cell membrane. While E.
View Article and Find Full Text PDFPhotosynthesis in fruits is well documented, but its contribution to seed development and yield remains largely unquantified. In oilseeds, the pods are green and elevated with direct access to sunlight. With C labeling in planta and through an intact pod labeling system, a unique multi-tissue comprehensive flux model mechanistically described how pods assimilate up to one-half (33 to 45%) of seed carbon by proximal photosynthesis in .
View Article and Find Full Text PDFIn developing soybean seeds, carbon is partitioned between oil, protein and carbohydrates. Here, we demonstrate that suppression of lipase-mediated turnover of triacylglycerols (TAG) during late seed development increases fatty acid content and decreases the presence of undigestible oligosaccharides. During late stages of embryo development, the fatty acid content of soybean seed decreases while the levels of the oligosaccharides raffinose and stachyose increase.
View Article and Find Full Text PDFThe metabolic plasticity of tobacco leaves has been demonstrated via the generation of transgenic plants that can accumulate over 30% dry weight as triacylglycerols. In investigating the changes in carbon partitioning in these high lipid-producing (HLP) leaves, foliar lipids accumulated stepwise over development. Interestingly, non-transient starch was observed to accumulate with plant age in WT but not HLP leaves, with a drop in foliar starch concurrent with an increase in lipid content.
View Article and Find Full Text PDFMitochondria and chloroplasts perform essential functions in respiration, ATP production, and photosynthesis, and both organelles contain genomes that encode only some of the proteins that are required for these functions. The proteins and mechanisms for organelle DNA replication are very similar to bacterial or phage systems. The minimal replisome may consist of DNA polymerase, a primase/helicase, and a single-stranded DNA binding protein (SSB), similar to that found in bacteriophage T7.
View Article and Find Full Text PDFBackground: Plant chloroplasts and mitochondria utilize nuclear encoded proteins to replicate their DNA. These proteins are purposely built for replication in the organelle environment and are distinct from those involved in replication of the nuclear genome. These organelle-localized proteins have ancestral roots in bacterial and bacteriophage genes, supporting the endosymbiotic theory of their origin.
View Article and Find Full Text PDFPlants possess mitochondrial genomes that are large and complex compared to animals. Nearly all animal mitochondrial genomes are about 16.5.
View Article and Find Full Text PDFChloroplast genome copy number is very high in leaf tissue, with upwards of 10,000 or more copies of the chloroplast DNA (ctDNA) per leaf cell. This is often promoted as a major advantage for engineering the plastid genome, as it provides high gene copy number and thus is expected to result in high expression of foreign proteins from integrated genes. However, it is also known that ctDNA copy number and ctDNA integrity decrease as cells age.
View Article and Find Full Text PDF