Publications by authors named "Stevin H Zorn"

Over the past decade, human genome-wide association and expression studies have strongly implicated dysregulation of the innate immune system in the pathogenesis of Alzheimer's disease (AD). Single cell mRNA sequencing studies have identified innate immune cell subtypes that are minimally present in normal healthy brain, but whose numbers greatly increase in association with AD pathology. These AD pathology-associated immune cells are putatively the locus for the immune-related AD risk.

View Article and Find Full Text PDF

Visceral pain is a prominent feature of various gastrointestinal diseases. The P2X7 receptor is expressed by multiple cell types including dorsal root ganglion satellite glial cells, macrophages, and spinal microglia, all of which have been implicated in nociceptive sensitization. We have used the selective and CNS penetrant P2X7 receptor antagonist Lu AF27139 to explore this receptor's role in distinct rat models of inflammatory and visceral hypersensitivity.

View Article and Find Full Text PDF

Background: P2X7 receptor antagonists have potential for treating various central nervous system (CNS) diseases, including neuropathic pain, although none have been approved for clinical use. Reasons may include insufficient understanding of P2X7 receptor signalling in pain, and the lack of a corresponding preclinical mechanistic biomarker.

Methods: Lu AF27139 is a highly selective and potent small molecule antagonist at rat, mouse and human forms of the P2X7 receptor, with excellent pharmacokinetic and CNS permeability properties.

View Article and Find Full Text PDF

There remains an insufficient number of P2X7 receptor antagonists with adequate rodent potency, CNS permeability, and pharmacokinetic properties from which to evaluate CNS disease hypotheses preclinically. Herein, we describe the molecular pharmacology, safety, pharmacokinetics, and functional CNS target engagement of Lu AF27139, a novel rodent-active and CNS-penetrant P2X7 receptor antagonist. Lu AF27139 is highly selective and potent against rat, mouse, and human forms of the receptors.

View Article and Find Full Text PDF

Activation of innate immunity and deposition of blood-derived fibrin in the central nervous system (CNS) occur in autoimmune and neurodegenerative diseases, including multiple sclerosis (MS) and Alzheimer's disease (AD). However, the mechanisms that link disruption of the blood-brain barrier (BBB) to neurodegeneration are poorly understood, and exploration of fibrin as a therapeutic target has been limited by its beneficial clotting functions. Here we report the generation of monoclonal antibody 5B8, targeted against the cryptic fibrin epitope γ, to selectively inhibit fibrin-induced inflammation and oxidative stress without interfering with clotting.

View Article and Find Full Text PDF

In this review, we aim to present, discuss and clarify our current understanding regarding the prediction of possible antipsychotic effects of metabotropic glutamate (mGlu) receptor ligands. The number of preclinical trials clearly indicates, that this group of compounds constitutes an excellent alternative to presently used antipsychotic therapy, being effective not only to positive, but also negative and cognitive symptoms of schizophrenia. Although the results of clinical trials that were performed for the group of mGlu2/3 agonists were not so enthusiastic as in animal studies, they still showed that mGlu ligands do not induced variety of side effects typical for presently used antipsychotics, and were generally well tolerated.

View Article and Find Full Text PDF

Rationale: Diverse preclinical studies suggest the potential therapeutic utility of the modulation of the glutamatergic system in brain via metabotropic glutamate (mGlu) receptors. Lu AF21934, a positive allosteric modulator of the mGlu4 receptor, was previously shown to reverse behavioral phenotypes in animal models thought to mimic positive, negative, and cognitive symptoms of schizophrenia.

Objectives: To begin elucidating the brain circuitry involved in mGlu4 receptor pharmacology and add mechanistic support to Lu AF21934-induced phenotypic responses, the potential involvement of 5-HT1A receptors in these antipsychotic-like effects was explored.

View Article and Find Full Text PDF

Harmaline induces tremor in animals resembling essential tremor which has been suggested to result from activation of the glutamatergic olivo-cerebellar projection. The aim of the present study was to examine the effects of systemic administration of Lu AF21934, a brain-penetrating positive allosteric modulator of the metabotropic glutamate receptor 4 (mGlu4), on the harmaline-induced tremor and other forms of motor activity in rats using fully automated Force Plate Actimeters. The influence of harmaline on the mGlu4 mRNA expression in the cerebellum and inferior olive was analysed by in situ hybridization.

View Article and Find Full Text PDF