This pipeline presents a refined approach for deriving personalized neurobiological insights from iPSC-derived neurospheres. By employing Tandem Mass Tag (TMT) labeling, we optimized sample pooling and multiplexing for robust comparative analysis across experimental conditions, maximizing data yield per sample. Through single-patient-derived neurospheres-composed of neural progenitor cells, early neurons, and radial glia-this study explores proteomic profiling to mirror the cellular complexity of neurodevelopment more accurately than traditional 2D cultures.
View Article and Find Full Text PDFThe Zika virus (ZIKV) epidemic declared in Brazil between 2015 and 2016 was associated with an increased prevalence of severe congenital malformations, including microcephaly. The distribution of microcephaly cases was not uniform across the country, with a disproportionately higher incidence in the Northeast region (NE). Our previous work demonstrated that saxitoxin (STX), a toxin present in the drinking water reservoirs of the NE, exacerbated the damaging effects of ZIKV on the developing brain.
View Article and Find Full Text PDFLysergic acid diethylamide (LSD) is a synthetic psychedelic compound with potential therapeutic value for psychiatric disorders. This study aims to establish Caenorhabditis elegans as an in vivo model for examining LSD's effects on locomotor behavior. Our results demonstrate that LSD is absorbed by C.
View Article and Find Full Text PDFSerine integrases (Ints) are a family of site-specific recombinases (SSRs) encoded by some bacteriophages to integrate their genetic material into the genome of a host. Their ability to rearrange DNA sequences in different ways including inversion, excision, or insertion with no help from endogenous molecular machinery, confers important biotechnological value as genetic editing tools with high host plasticity. Despite advances in their use in prokaryotic cells, only a few Ints are currently used as gene editors in eukaryotes, partly due to the functional loss and cytotoxicity presented by some candidates in more complex organisms.
View Article and Find Full Text PDFPsychedelics, recognized for their impact on perception, are resurging as promising treatments with rapid onset for mood and substance use disorders. Despite increasing evidence from clinical trials, questions persist about the cellular and molecular mechanisms and their precise correlation with treatment outcomes. Murine neurons and immortalized non-neural cell lines harboring overexpressed constructs have shed light on neuroplastic changes mediated by the serotonin 2A receptor (5-HT2AR) as the primary mechanism.
View Article and Find Full Text PDFJ Chromatogr A
October 2023
Psychedelic compounds have gained renewed interest for their potential therapeutic applications, but their metabolism and effects on complex biological systems remain poorly understood. Here, we present a systematic characterization of Lysergic Acid Diethylamide (LSD) metabolites in the model organism Caenorhabditis elegans using state-of-the-art analytical techniques. By employing ultra-high performance liquid chromatography coupled with high-resolution tandem mass spectrometry, we putatively identified a range of LSD metabolites, shedding light on their metabolic pathways and offering insights into their pharmacokinetics.
View Article and Find Full Text PDFSchizophrenia is a severe psychiatric disorder of neurodevelopmental origin that affects around 1% of the world's population. Proteomic studies and other approaches have provided evidence of compromised cellular processes in the disorder, including mitochondrial function. Most of the studies so far have been conducted on postmortem brain tissue from patients, and therefore, do not allow the evaluation of the neurodevelopmental aspect of the disorder.
View Article and Find Full Text PDFBackground: Schizophrenia is a complex and severe neuropsychiatric disorder, with a wide range of debilitating symptoms. Several aspects of its multifactorial complexity are still unknown, and some are accepted to be an early developmental deficiency with a more specifically neurodevelopmental origin. Understanding the timepoints of disturbances during neural cell differentiation processes could lead to an insight into the development of the disorder.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the primary cause of dementia, to date. The urgent need to understand the biological and biochemical processes related to this condition, as well as the demand for reliable in vitro models for drug screening, has led to the development of novel techniques, among which stem cell methods are of utmost relevance for AD research, particularly the development of human brain organoids. Brain organoids are three-dimensional cellular aggregates derived from induced pluripotent stem cells (iPSCs) that recreate different neural cell interactions and tissue characteristics in culture.
View Article and Find Full Text PDFAge increases the risk for cognitive impairment and is the single major risk factor for Alzheimer's disease (AD), the most prevalent form of dementia in the elderly. The pathophysiological processes triggered by aging that render the brain vulnerable to dementia involve, at least in part, changes in inflammatory mediators. Here we show that lipoxin A4 (LXA4), a lipid mediator of inflammation resolution known to stimulate endocannabinoid signaling in the brain, is reduced in the aging central nervous system.
View Article and Find Full Text PDFSchizophrenia (SZ) is a severe mental disorder that arises from abnormal neurodevelopment, caused by genetic and environmental factors. SZ often involves distortions in reality perception and it is widely associated with alterations in brain connectivity. In the present work, we used Human Induced Pluripotent Stem Cells (hiPSCs)-derived neuronal cultures to study neural communicational dynamics during early development in SZ.
View Article and Find Full Text PDFThe Zika virus (ZIKV) caused neurological abnormalities in more than 3500 Brazilian newborns between 2015 and 2020. Data have pointed to oxidative stress in astrocytes as well as to dysregulations in neural cell proliferation and cell cycle as important events accounting for the cell death and neurological complications observed in Congenital Zika Syndrome. Copper imbalance has been shown to induce similar alterations in other pathologies, and disturbances in copper homeostasis have already been described in viral infections.
View Article and Find Full Text PDFAlthough increasing evidence confirms neuropsychiatric manifestations associated mainly with severe COVID-19 infection, long-term neuropsychiatric dysfunction (recently characterized as part of "long COVID-19" syndrome) has been frequently observed after mild infection. We show the spectrum of cerebral impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, ranging from long-term alterations in mildly infected individuals (orbitofrontal cortical atrophy, neurocognitive impairment, excessive fatigue and anxiety symptoms) to severe acute damage confirmed in brain tissue samples extracted from the orbitofrontal region (via endonasal transethmoidal access) from individuals who died of COVID-19. In an independent cohort of 26 individuals who died of COVID-19, we used histopathological signs of brain damage as a guide for possible SARS-CoV-2 brain infection and found that among the 5 individuals who exhibited those signs, all of them had genetic material of the virus in the brain.
View Article and Find Full Text PDFtriplication in Down's syndrome and its overexpression in Alzheimer's disease suggest a role for increased DYRK1A activity in the abnormal metabolism of APP. Transport defects are early phenotypes in the progression of Alzheimer's disease, which lead to APP processing impairments. However, whether DYRK1A regulates the intracellular transport and delivery of APP in human neurons remains unknown.
View Article and Find Full Text PDFBrain abnormalities and congenital malformations have been linked to the circulating strain of Zika virus (ZIKV) in Brazil since 2016 during the microcephaly outbreak; however, the molecular mechanisms behind several of these alterations and differential viral molecular targets have not been fully elucidated. Here we explore the proteomic alterations induced by ZIKV by comparing the Brazilian (Br ZIKV) and the African (MR766) viral strains, in addition to comparing them to the molecular responses to the Dengue virus type 2 (DENV). Neural stem cells (NSCs) derived from induced pluripotent stem (iPSCs) were cultured both as monolayers and in suspension (resulting in neurospheres), which were then infected with ZIKV (Br ZIKV or ZIKV MR766) or DENV to assess alterations within neural cells.
View Article and Find Full Text PDFThe therapeutic use of classical psychedelic substances such as d-lysergic acid diethylamide (LSD) surged in recent years. Studies in rodents suggest that these effects are produced by increased neural plasticity, including stimulation of the mTOR pathway, a key regulator of metabolism, plasticity, and aging. Could psychedelic-induced neural plasticity be harnessed to enhance cognition? Here we show that LSD treatment enhanced performance in a novel object recognition task in rats, and in a visuo-spatial memory task in humans.
View Article and Find Full Text PDFSchizophrenia (SZ) is a complex neuropsychiatric disorder, affecting 1% of the world population. Long-standing clinical observations and molecular data have pointed to a possible vascular deficiency that could be acting synergistically with neuronal dysfunction in SZ. As SZ is a neurodevelopmental disease, the use of human-induced pluripotent stem cells (hiPSC) allows disease biology modeling while retaining the patient's unique genetic signature.
View Article and Find Full Text PDFAged and photoaged skin exhibit fine wrinkles that are signs of epidermal inflammation and degeneration. It has been shown that healthy elderly skin expresses amyloidogenic proteins, including α-Synuclein, which are known to oligomerize and trigger inflammation and neurodegeneration. However, little is known about their putative role in skin physiology and sensitivity.
View Article and Find Full Text PDFSARS-CoV-2 infects cardiac cells and causes heart dysfunction. Conditions such as myocarditis and arrhythmia have been reported in COVID-19 patients. The Sigma-1 receptor (S1R) is a ubiquitously expressed chaperone that plays a central role in cardiomyocyte function.
View Article and Find Full Text PDFDopamine signaling has numerous roles during brain development. In addition, alterations in dopamine signaling may be also involved in the pathophysiology of psychiatric disorders. Neurodevelopment is modulated in multiple steps by reactive oxygen species (ROS), byproducts of oxidative metabolism that are signaling factors involved in proliferation, differentiation, and migration.
View Article and Find Full Text PDFCoronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which can infect several organs, especially impacting respiratory capacity. Among the extrapulmonary manifestations of COVID-19 is myocardial injury, which is associated with a high risk of mortality. Myocardial injury, caused directly or indirectly by SARS-CoV-2 infection, can be triggered by inflammatory processes that lead to damage to the heart tissue.
View Article and Find Full Text PDFBackground: Neurological and other systemic complications occur in adults with severe COVID-19. Here we describe SARS-CoV-2 infection complicated by neuroinvasion in the tissues of a child.
Methods: We performed a complete autopsy of a 14-month-old child who died of COVID-19 pneumonitis.