Engineering the production of polyhydroxyalkanoates (PHAs) into high biomass bioenergy crops has the potential to provide a sustainable supply of bioplastics and energy from a single plant feedstock. One of the major challenges in engineering C4 plants for the production of poly[(R)-3-hydroxybutyrate] (PHB) is the significantly lower level of polymer produced in the chloroplasts of mesophyll (M) cells compared to bundle sheath (BS) cells, thereby limiting the full PHB yield-potential of the plant. In this study, we provide evidence that the access to substrate for PHB synthesis may limit polymer production in M chloroplasts.
View Article and Find Full Text PDFThe production of novel biopolymers in plants has the potential to provide renewable sources of industrial materials through agriculture. In this review we will highlight recent progress with plant-based production of polyhydroxyalkanoates (PHAs), silk, elastin, collagen, and cyanophycin with an emphasis on the synthesis of poly[(R)-3-hydroxybutyrate] (PHB), a renewable biodegradable PHA polymer with potential commercial applications in plastics, chemicals, and feed markets. Improved production of PHB has required manipulation of promoters driving expression of transgenes, reduction in activity of endogenous enzymes in competing metabolic pathways, insertion of genes to increase carbon flow to polymer, and basic plant biochemistry to understand metabolic limitations.
View Article and Find Full Text PDFBackground: Polyhydroxyalkanoates are linear biodegradable polyesters produced by bacteria as a carbon store and used to produce a range of bioplastics. Widespread polyhydroxyalkanoate production in C4 crops would decrease petroleum dependency by producing a renewable supply of biodegradable plastics along with residual biomass that could be converted into biofuels or energy. Increasing yields to commercial levels in biomass crops however remains a challenge.
View Article and Find Full Text PDFPolyhydroxyalkanoates (PHAs) are bacterial carbon storage polymers used as renewable, biodegradable plastics. PHA production in plants may be a way to reduce industrial PHA production costs. We recently demonstrated a promising level of peroxisomal PHA production in the high biomass crop species sugarcane.
View Article and Find Full Text PDFPolyhydroxybutyrate (PHB) is a naturally occurring bacterial polymer that can be used as a biodegradable replacement for some petrochemical-derived plastics. Polyhydroxybutyrate is produced commercially by fermentation, but to reduce production costs, efforts are underway to produce it in engineered plants, including sugarcane. However, PHB levels in this high-biomass crop are not yet commercially viable.
View Article and Find Full Text PDFTo engineer trehalose metabolism in sugarcane (Saccharum spp. hybrids) two transgenes were introduced to the genome: trehalose-6-phosphate synthase- phosphatase (TPSP), to increase trehalose biosynthesis and an RNAi transgene specific for trehalase, to abrogate trehalose catabolism. In RNAi-expressing lines trehalase expression was abrogated in many plants however no decrease in trehalase activity was observed.
View Article and Find Full Text PDFBecause sucrose stored in mature stalks (in excess of 40% of stalk dry weight) can be wholly mobilized to supply carbon for the growth of heterotrophic tissues, we propose that sucrose mobilization requires a net sink-to-source transition that acts in toto within sett internode storage parenchyma. Based on our data we propose that mobilization of sucrose from culm storage parenchyma requires minimal investment of metabolic resources, and that the mechanism of sucrose mobilization is metabolically neutral. By magnetic resonance spectroscopy and phloem-specific tracer dyes, strong evidence was found that sucrose is mobilized from sett storage parenchyma via phloem to the growing shoot tissue.
View Article and Find Full Text PDFPeroxisomes are functionally diverse organelles that are wholly dependent on import of nuclear-encoded proteins. The signals that direct proteins into these organelles are either found at the C-terminus (type 1 peroxisomal targeting signal; PTS1) or N-terminus (type 2 peroxisomal targeting signal; PTS2) of the protein. Based on a limited number of tests in heterologous systems, PTS1 signals appear to be conserved across species.
View Article and Find Full Text PDFPolyhydroxybutyrate (PHB) is a bacterial polyester that has properties similar to some petrochemically produced plastics. Plant-based production has the potential to make this biorenewable plastic highly competitive with petrochemical-based plastics. We previously reported that transgenic sugarcane produced PHB at levels as high as 1.
View Article and Find Full Text PDFYeasts associate with numerous insects, and they can assist the metabolic processes within their hosts. Two distinct yeasts were identified by PCR within the planthopper Perkinsiella saccharicida, the vector of Fiji disease virus to sugarcane. The utility of both microbes for potential paratransgenic approaches to control Fiji leaf gall (FLG) was assessed.
View Article and Find Full Text PDFPolyhydroxyalkanoates (PHAs) are bacterial carbon storage polymers with diverse plastic-like properties. PHA biosynthesis in transgenic plants is being developed as a way to reduce the cost and increase the sustainability of industrial PHA production. The homopolymer polyhydroxybutyrate (PHB) is the simplest form of these biodegradable polyesters.
View Article and Find Full Text PDFLeaves of C(4) grasses (such as maize [Zea mays], sugarcane [Saccharum officinarum], and sorghum [Sorghum bicolor]) form a classical Kranz leaf anatomy. Unlike C(3) plants, where photosynthetic CO(2) fixation proceeds in the mesophyll (M), the fixation process in C(4) plants is distributed between two cell types, the M cell and the bundle sheath (BS) cell. Here, we develop a C(4) genome-scale model (C4GEM) for the investigation of flux distribution in M and BS cells during C(4) photosynthesis.
View Article and Find Full Text PDFSugarcane (a Saccharum spp. interspecific hybrid) was previously engineered to synthesize sorbitol (designated as sorbitolcane). Motivated by the atypical development of the leaves in some sorbitolcane, the polar metabolite profiles in the leaves of those plants were compared against a group of control sugarcane plants.
View Article and Find Full Text PDFGenome-scale metabolic network models have been successfully used to describe metabolism in a variety of microbial organisms as well as specific mammalian cell types and organelles. This systems-based framework enables the exploration of global phenotypic effects of gene knockouts, gene insertion, and up-regulation of gene expression. We have developed a genome-scale metabolic network model (AraGEM) covering primary metabolism for a compartmentalized plant cell based on the Arabidopsis (Arabidopsis thaliana) genome.
View Article and Find Full Text PDFMetabolic engineering of plant peroxisomes for biotechnological purposes typically requires efficient peroxisomal targeting of heterologous proteins. Type I peroxisomal targeting signals (PTS1) consist of three uncleaved amino acids (SKL or a conserved variant) at the carboxyl terminus and direct nuclear-encoded proteins into the peroxisomes of eukaryotic cells. PTS1 fusion with a heterologous protein results in peroxisomal targeting of that protein, but the minimal length of PTS1 required for efficient targeting in plants is vague.
View Article and Find Full Text PDFBacteria from the hindguts of Dermolepida albohirtum larvae were assessed for their potential to be used in paratransgenic strategies that target scarab pests of sugarcane. Bacteria isolated in pure culture from the hindguts of D. albohirtum larvae were from the Proteobacteria, Firmicutes, and Actinobacteria phyla and matched closely with taxa from intestinal and rhizosphere environments.
View Article and Find Full Text PDFApproximately 10-15% of plant nuclear genes appear to encode mitochondrial proteins that are directed to mitochondria by specific targeting signals. Reports on the heterologous function of these targeting signals are generally limited to one or a few species, with an emphasis on model plants such as tobacco and Arabidopsis. Given their sequence diversity and their insufficient testing in commercially important crops (including monocotyledonous crops), the extent to which these signals can be relied on for biotechnological purposes across species remains to be established.
View Article and Find Full Text PDFSymbiotic bacteria residing in the hindgut chambers of scarab beetle larvae may be useful in paratransgenic approaches to reduce larval root-feeding activities on agricultural crops. We compared the bacterial community profiles associated with the hindgut walls of individual Dermolepida albohirtum third-instar larvae over 2 years and those associated with their plant root food source among different geographic regions. Denaturing gradient gel electrophoresis analysis was used with universal and Actinobacteria-specific 16S rRNA primers to reveal a number of taxa that were found consistently in all D.
View Article and Find Full Text PDFRandom mutagenesis was used to create a library of chimeric dextranase (dex1) genes. A plate-screening protocol was developed with improved thermostability as a selection criterion. The mutant library was screened for active dextranase variants by observing clearing zones on dextran-blue agar plates at 50 degrees C after exposure to 68 degrees C for 2 h, a temperature regime at which wild-type activity was abolished.
View Article and Find Full Text PDFAn efficient in planta sugarcane-based production system may be realized by coupling the synthesis of alternative products to the metabolic intermediates of sucrose metabolism, thus taking advantage of the sucrose-producing capability of the plant. This was evaluated by synthesizing sorbitol in sugarcane (Saccharum hybrids) using the Malus domestica sorbitol-6-phosphate dehydrogenase gene (mds6pdh). Mature transgenic sugarcane plants were compared with untransformed sugarcane variety Q117 by evaluation of the growth, metabolite levels and extractable activity of relevant enzymes.
View Article and Find Full Text PDFWe report here the results from a glasshouse trial of several transgenic sugarcane (Saccharum spp. hybrids) lines accumulating the bacterial polyester polyhydroxybutyrate (PHB) in plastids. The aims of the trial were to characterize the spatio-temporal pattern of PHB accumulation at a whole-plant level, to identify factors limiting PHB production and to determine whether agronomic performance was affected adversely by PHB accumulation.
View Article and Find Full Text PDFWe report here the production of the bacterial polyester, polyhydroxybutyrate (PHB), in the crop species sugarcane (Saccharum spp. hybrids). The PHB biosynthesis enzymes of Ralstonia eutropha [beta-ketothiolase (PHAA), acetoacetyl-reductase (PHAB) and PHB synthase (PHAC)] were expressed in the cytosol or targeted to mitochondria or plastids.
View Article and Find Full Text PDFSugarcane (Saccharum hybrids) was evaluated as a production platform for p-hydroxybenzoic acid using two different bacterial proteins (a chloroplast-targeted version of Escherichia coli chorismate pyruvate-lyase and 4-hydroxycinnamoyl-CoA hydratase/lyase from Pseudomonas fluorescens) that both provide a one-enzyme pathway from a naturally occurring plant intermediate. The substrates for these enzymes are chorismate (a shikimate pathway intermediate that is synthesized in plastids) and 4-hydroxycinnamoyl-CoA (a cytosolic phenylpropanoid intermediate). Although both proteins have previously been shown to elevate p-hydroxybenzoic acid levels in plants, they have never been evaluated concurrently in the same laboratory.
View Article and Find Full Text PDFGenes encoding dextranolytic enzymes were isolated from Paenibacillus strains Dex40-8 and Dex50-2. Single, similar but non-identical dex1 genes were isolated from each strain, and a more divergent dex2 gene was isolated from strain Dex50-2. The protein deduced from the Dex40-8 dex1 gene sequence had 716 amino acids, with a predicted M(r) of 80.
View Article and Find Full Text PDF