Background: Computational tools analyzing RNA-sequencing data have boosted alternative splicing research by identifying and assessing differentially spliced genes. However, common alternative splicing analysis tools differ substantially in their statistical analyses and general performance. This report compares the computational performance (CPU utilization and RAM usage) of three event-level splicing tools; rMATS, MISO, and SUPPA2.
View Article and Find Full Text PDFIn this paper, we study two recent theoretical models--a population-sizing model and a convergence model--and examine their assumptions to gain insights into the conditions under which selecto-recombinative GAs work well. We use these insights to formulate several design rules to develop competent GAs for practical problems. To test the usefulness of the design rules, we consider as a case study the map-labeling problem, an NP-hard problem from cartography.
View Article and Find Full Text PDF