Publications by authors named "Steven Z Josefowicz"

Macrophages adopt distinct phenotypes in response to environmental cues, with type-2 cytokine interleukin-4 promoting a tissue-repair homeostatic state (M2). Glucocorticoids (GC), widely used anti-inflammatory therapeutics, reportedly impart a similar phenotype (M2), but how such disparate pathways may functionally converge is unknown. We show using integrative functional genomics that M2 and M2 transcriptomes share a striking overlap mirrored by a shift in chromatin landscape in both common and signal-specific gene subsets.

View Article and Find Full Text PDF

Pathogen encounter can result in epigenetic remodeling that shapes disease caused by heterologous pathogens. Here, we examined innate immune memory in the context of commonly circulating respiratory viruses. Single-cell analyses of airway-resident immune cells in a disease-relevant murine model of SARS-CoV-2 recovery revealed epigenetic reprogramming in alveolar macrophages following infection.

View Article and Find Full Text PDF

The clearance of apoptotic cells, termed efferocytosis, is essential for tissue homeostasis and prevention of autoimmunity. Although past studies have elucidated local molecular signals that regulate homeostatic efferocytosis in a tissue, whether signals arising distally also regulate homeostatic efferocytosis remains elusive. Here, we show that large peritoneal macrophage (LPM) display impairs efferocytosis in broad-spectrum antibiotics (ABX)-treated, vancomycin-treated and germ-free mice in vivo, all of which have a depleted gut microbiota.

View Article and Find Full Text PDF

Monocyte-derived macrophages (mo-macs) drive immunosuppression in the tumor microenvironment (TME) and tumor-enhanced myelopoiesis in the bone marrow (BM) fuels these populations. Here, we performed paired transcriptome and chromatin analysis over the continuum of BM myeloid progenitors, circulating monocytes, and tumor-infiltrating mo-macs in mice and in patients with lung cancer to identify myeloid progenitor programs that fuel pro-tumorigenic mo-macs. Analyzing chromatin accessibility and histone mark changes, we show that lung tumors prime accessibility for Nfe2l2 (NRF2) in BM myeloid progenitors as a cytoprotective response to oxidative stress.

View Article and Find Full Text PDF

Innate immune memory endows innate immune cells with antigen independent heightened responsiveness to subsequent challenges. The durability of this response can be mediated by inflammation induced epigenetic and metabolic reprogramming in hematopoietic stem and progenitor cells (HSPCs) that are maintained through differentiation to mature immune progeny. Understanding the mechanisms and extent of trained immunity induction by pathogens and vaccines, such as BCG, in HSPC remains a critical area of exploration with important implications for health and disease.

View Article and Find Full Text PDF

Mycobacterium bovis BCG is the vaccine against tuberculosis and an immunotherapy for bladder cancer. When administered intravenously, BCG reprograms bone marrow hematopoietic stem and progenitor cells (HSPCs), leading to heterologous protection against infections. Whether HSPC-reprogramming contributes to the anti-tumor effects of BCG administered into the bladder is unknown.

View Article and Find Full Text PDF

In physiological conditions, few circulating hematopoietic stem/progenitor cells (cHSPCs) are present in the peripheral blood, but their contribution to human hematopoiesis remain unsolved. By integrating advanced immunophenotyping, single-cell transcriptional and functional profiling, and integration site (IS) clonal tracking, we unveiled the biological properties and the transcriptional features of human cHSPC subpopulations in relationship to their bone marrow (BM) counterpart. We found that cHSPCs reduced in cell count over aging and are enriched for primitive, lymphoid, and erythroid subpopulations, showing preactivated transcriptional and functional state.

View Article and Find Full Text PDF

Macrophages adopt distinct phenotypes in response to environmental cues, with type-2 cytokine interleukin-4 promoting a tissue-repair homeostatic state (M2). Glucocorticoids, widely used anti-inflammatory therapeutics, reportedly impart a similar phenotype (M2), but how such disparate pathways may functionally converge is unknown. We show using integrative functional genomics that M2 and M2 transcriptomes share a striking overlap mirrored by a shift in chromatin landscape in both common and signal-specific gene subsets.

View Article and Find Full Text PDF

Pathogen encounter results in long-lasting epigenetic imprinting that shapes diseases caused by heterologous pathogens. The breadth of this innate immune memory is of particular interest in the context of respiratory pathogens with increased pandemic potential and wide-ranging impact on global health. Here, we investigated epigenetic imprinting across cell lineages in a disease relevant murine model of SARS-CoV-2 recovery.

View Article and Find Full Text PDF

Gastrointestinal fungal dysbiosis is a hallmark of several diseases marked by systemic immune activation. Whether persistent pathobiont colonization during immune alterations and impaired gut barrier function has a durable impact on host immunity is unknown. We found that elevated levels of Candida albicans immunoglobulin G (IgG) antibodies marked patients with severe COVID-19 (sCOVID-19) who had intestinal Candida overgrowth, mycobiota dysbiosis and systemic neutrophilia.

View Article and Find Full Text PDF

Inflammation can trigger lasting phenotypes in immune and non-immune cells. Whether and how human infections and associated inflammation can form innate immune memory in hematopoietic stem and progenitor cells (HSPC) has remained unclear. We found that circulating HSPC, enriched from peripheral blood, captured the diversity of bone marrow HSPC, enabling investigation of their epigenomic reprogramming following coronavirus disease 2019 (COVID-19).

View Article and Find Full Text PDF

Transition between activation and quiescence programs in hematopoietic stem and progenitor cells (HSC/HSPCs) is perceived to be governed intrinsically and by microenvironmental co-adaptation. However, HSC programs dictating both transition and adaptability, remain poorly defined. Single cell multiome analysis divulging differential transcriptional activity between distinct HSPC states, indicated for the exclusive absence of Fli-1 motif from quiescent HSCs.

View Article and Find Full Text PDF

Vascular injury is a well-established, disease-modifying factor in acute respiratory distress syndrome (ARDS) pathogenesis. Recently, coronavirus disease 2019 (COVID-19)-induced injury to the vascular compartment has been linked to complement activation, microvascular thrombosis, and dysregulated immune responses. This study sought to assess whether aberrant vascular activation in this prothrombotic context was associated with the induction of necroptotic vascular cell death.

View Article and Find Full Text PDF

Histone variants and the associated post-translational modifications that govern the stemness of haematopoietic stem cells (HSCs) and differentiation thereof into progenitors (HSPCs) have not been well defined. H3.3 is a replication-independent H3 histone variant in mammalian systems that is enriched at both H3K4me3- and H3K27me3-marked bivalent genes as well as H3K9me3-marked endogenous retroviral repeats.

View Article and Find Full Text PDF

The three classes of interferons (IFNs) share the ability to inhibit viral replication, activating cell transcriptional programs that regulate both innate and adaptive responses to viral and intracellular bacterial challenge. Due to their unique potency in regulating viral replication, and their association with numerous autoimmune diseases, the tightly orchestrated transcriptional regulation of IFNs has long been a subject of intense investigation. The protective role of early robust IFN responses in the context of infection with SARS-CoV-2 has further underscored the relevance of these pathways.

View Article and Find Full Text PDF

Complex organisms are able to respond to diverse environmental cues by rapidly inducing specific transcriptional programs comprising a few dozen genes among thousands. The highly complex environment within the nucleus-a crowded milieu containing large genomes tightly condensed with histone proteins in the form of chromatin-makes inducible transcription a challenge for the cell, akin to the proverbial needle in a haystack. The different signaling pathways and transcription factors involved in the transmission of information from the cell surface to the nucleus have been readily explored, but not so much the specific mechanisms employed by the cell to ultimately instruct the chromatin changes necessary for a fast and robust transcription activation.

View Article and Find Full Text PDF

Histone acetylation levels are regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs) that antagonistically control the overall balance of this post-translational modification. HDAC inhibitors (HDACi) are potent agents that disrupt this balance and are used clinically to treat diseases including cancer. Despite their use, little is known about their effects on chromatin regulators, particularly those that signal through lysine acetylation.

View Article and Find Full Text PDF

Complex organisms can rapidly induce select genes in response to diverse environmental cues. This regulation occurs in the context of large genomes condensed by histone proteins into chromatin. The sensing of pathogens by macrophages engages conserved signalling pathways and transcription factors to coordinate the induction of inflammatory genes.

View Article and Find Full Text PDF

A genome-wide screening of functionally active enhancers, combined with analyses of chromatin features, transcription factor binding and gene expression, reveals general principles of gene regulatory networks in activated B cells.

View Article and Find Full Text PDF

The inflammatory response requires coordinated activation of both transcription factors and chromatin to induce transcription for defense against pathogens and environmental insults. We sought to elucidate the connections between inflammatory signaling pathways and chromatin through genomic footprinting of kinase activity and unbiased identification of prominent histone phosphorylation events. We identified H3 serine 28 phosphorylation (H3S28ph) as the principal stimulation-dependent histone modification and observed its enrichment at induced genes in mouse macrophages stimulated with bacterial lipopolysaccharide.

View Article and Find Full Text PDF

Information encoded in DNA is interpreted, modified, and propagated as chromatin. The diversity of inputs encountered by eukaryotic genomes demands a matching capacity for transcriptional outcomes provided by the combinatorial and dynamic nature of epigenetic processes. Advances in genome editing, visualization technology, and genome-wide analyses have revealed unprecedented complexity of chromatin pathways, offering explanations to long-standing questions and presenting new challenges.

View Article and Find Full Text PDF

Access to high-quality antibodies is a necessity for the study of histones and their posttranslational modifications (PTMs). Here we debut the Histone Antibody Specificity Database (http://www.histoneantibodies.

View Article and Find Full Text PDF