Publications by authors named "Steven Wiltshire"

To gain insight into potential regulatory mechanisms through which the effects of variants at four established type 2 diabetes (T2D) susceptibility loci (CDKAL1, CDKN2A-B, IGF2BP2 and KCNQ1) are mediated, we undertook transancestral fine-mapping in 22 086 cases and 42 539 controls of East Asian, European, South Asian, African American and Mexican American descent. Through high-density imputation and conditional analyses, we identified seven distinct association signals at these four loci, each with allelic effects on T2D susceptibility that were homogenous across ancestry groups. By leveraging differences in the structure of linkage disequilibrium between diverse populations, and increased sample size, we localised the variants most likely to drive each distinct association signal.

View Article and Find Full Text PDF

We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation.

View Article and Find Full Text PDF

Reference panels from the 1000 Genomes (1000G) Project Consortium provide near complete coverage of common and low-frequency genetic variation with minor allele frequency ≥0.5% across European ancestry populations. Within the European Network for Genetic and Genomic Epidemiology (ENGAGE) Consortium, we have undertaken the first large-scale meta-analysis of genome-wide association studies (GWAS), supplemented by 1000G imputation, for four quantitative glycaemic and obesity-related traits, in up to 87,048 individuals of European ancestry.

View Article and Find Full Text PDF

To further understanding of the genetic basis of type 2 diabetes (T2D) susceptibility, we aggregated published meta-analyses of genome-wide association studies (GWAS), including 26,488 cases and 83,964 controls of European, east Asian, south Asian and Mexican and Mexican American ancestry. We observed a significant excess in the directional consistency of T2D risk alleles across ancestry groups, even at SNPs demonstrating only weak evidence of association. By following up the strongest signals of association from the trans-ethnic meta-analysis in an additional 21,491 cases and 55,647 controls of European ancestry, we identified seven new T2D susceptibility loci.

View Article and Find Full Text PDF

Background: Low levels of serum adiponectin have been linked to central obesity, insulin resistance, metabolic syndrome, and type 2 diabetes. Variants in ADIPOQ, the gene encoding adiponectin, have been shown to influence serum adiponectin concentration, and along with variants in the adiponectin receptors (ADIPOR1 and ADIPOR2) have been implicated in metabolic syndrome and type 2 diabetes. This study aimed to comprehensively investigate the association of common variants in ADIPOQ, ADIPOR1 and ADIPOR2 with serum adiponectin and insulin resistance syndromes in a large cohort of European-Australian individuals.

View Article and Find Full Text PDF

To extend understanding of the genetic architecture and molecular basis of type 2 diabetes (T2D), we conducted a meta-analysis of genetic variants on the Metabochip, including 34,840 cases and 114,981 controls, overwhelmingly of European descent. We identified ten previously unreported T2D susceptibility loci, including two showing sex-differentiated association. Genome-wide analyses of these data are consistent with a long tail of additional common variant loci explaining much of the variation in susceptibility to T2D.

View Article and Find Full Text PDF

Our previous neurocognitive studies of schizophrenia outlined two clusters of affected subjects--cognitively spared (CS) and cognitive deficit (CD), the latter's characteristics pointing to developmental origins and impaired synaptic plasticity. Here we investigate the contribution of polymorphisms in major regulators of these processes to susceptibility to schizophrenia and to CD in patients. We examine variation in genes encoding proteins at the gateway of Reelin signaling: ligands RELN and APOE, their common receptors APOER2 and VLDLR, and adaptor DAB1.

View Article and Find Full Text PDF

PARL (presenilin-associated rhomboid-like) is a mitochondrial protein involved in mitochondrial membrane remodelling, and maps to a quantitative trait locus (3q27) associated with metabolic traits. Recently the rs3732581 (Leu262Val) variant was found to be associated with increased levels of plasma insulin, a finding not replicated in a larger cohort. The aim of the current study was to investigate the associations between rs3732581 and levels of plasma insulin, metabolic syndrome (MetS) and its components, and cardiovascular disease.

View Article and Find Full Text PDF

The objective of this study was to determine whether single nucleotide polymorphisms (SNPs) in the Interleukin-1 (IL-1) gene family are associated with central obesity and metabolic syndrome in a coronary heart disease population. The IL-1 alpha C-889T (rs1800587) and IL-1 beta +3954 (rs1143634) SNPs were studied in a Western Australian coronary heart disease (CHD) population (N = 556). Subjects who were TT homozygous at either SNP had larger waist circumference (IL-1 alpha: 1.

View Article and Find Full Text PDF

Context: Polycystic ovary syndrome (PCOS) is a common endocrinopathy of uncertain etiology but with strong evidence for a genetic contribution.

Objective: The objective of the study was to test the hypothesis that the typical polycystic ovarian morphology is a marker of inherited biochemical features in families of women with PCOS.

Design: A study of probands with PCOS and their sisters.

View Article and Find Full Text PDF

Summary: Traditional two-dimensional (2D) software programs for drawing pedigrees are limited when dealing with extended pedigrees. In successive generations, the number of individuals grows exponentially, leading to an unworkable amount of space required in the horizontal direction for 2D displays. In addition, it is not always possible to place closely related individuals near each other due to the lack of space in 2Ds.

View Article and Find Full Text PDF

In a previous study we identified a relatively homogeneous subtype of schizophrenia characterized by pervasive cognitive deficit, which was the exclusive contributor to our findings of linkage to 6p25-p24. The 6p region contains Dysbindin (DTNBP1), considered to be one of the major schizophrenia candidate genes. While multiple studies have reported association between genetic variation in DTNBP1 and schizophrenia, the findings have been inconsistent and controversial, leading to recent calls for systematic re-examination and unambiguous evidence of association.

View Article and Find Full Text PDF

Endothelin-1 is a potent vasoconstrictor in the body. Previous studies have identified associations between the coding polymorphism K198N and hypertension, systolic blood pressure and HDL levels. We sought to examine the evidence for these associations and, additionally, the association between K198N, insulin resistance, metabolic syndrome and coronary artery disease (CAD).

View Article and Find Full Text PDF

Serum high density lipoprotein (HDL) levels are inversely related to the development of coronary artery disease (CAD). Apolipoproteins AI and AII are the major protein constituents of HDL particles. APOAI and APOAII genetic polymorphisms have been proposed to affect transcriptional efficiency of their respective genes, thereby altering serum lipid levels and influencing atherosclerotic disease risk.

View Article and Find Full Text PDF

Interpretation of dense single nucleotide polymorphism (SNP) follow-up of genome-wide association or linkage scan signals can be facilitated by establishing expectation for the behaviour of primary mapping signals upon fine-mapping, under both null and alternative hypotheses. We examined the inferences that can be made regarding the posterior probability of a real genetic effect and considered different disease-mapping strategies and prior probabilities of association. We investigated the impact of the extent of linkage disequilibrium between the disease SNP and the primary analysis signal and the extent to which the disease gene can be physically localised under these scenarios.

View Article and Find Full Text PDF

Context: Recently, a quantitative trait locus for stature was reported on chromosome 3p26 in patients with type 2 diabetes.

Objective: Given that ghrelin is a peptide involved in GH release and located on 3p26, we hypothesized that variation within its gene (GHRL) may be responsible for the quantitative trait locus on 3p26.

Design: The evidence for linkage around GHRL was refined with the genotyping of an additional four microsatellites (D3S4545, D3S1537, D3S1597, and D3S3611), giving a total of 27 markers, followed by multipoint variance components linkage analysis.

View Article and Find Full Text PDF

Recent data suggest that common variation in the transcription factor 7-like 2 (TCF7L2) gene is associated with type 2 diabetes. Evaluation of such associations in independent samples provides necessary replication and a robust assessment of effect size. Using four TCF7L2 single nucleotide polymorphisms (SNPs; including the two most associated in the previous study), we conducted a case-control study in 2,158 type 2 diabetic subjects and 2,574 control subjects and a family-based association analysis in 388 parent-offspring trios all from the U.

View Article and Find Full Text PDF

Genome-wide association scans are rapidly becoming reality, but there is no present consensus regarding genotyping strategies to optimise the discovery of true genetic risk factors. For a given investment in genotyping, should tag SNPs be selected in a gene-centric manner, or instead, should coverage be optimised based on linkage disequilibrium alone? We explored this question using empirical data from the HapMap-ENCODE project, and we found that tags designed specifically to capture common variation in exonic and evolutionarily conserved regions provide good coverage for 15-30% of the total common variation (depending on the population sample studied), and yield genotype savings compared with an anonymous tagging approach that captures all common variation. However, the same number of tags based on linkage disequilibrium alone captures substantially more (30-46%) of the total common variation.

View Article and Find Full Text PDF

Obesity is a major health problem, and many family-based studies have suggested that it has a strong genetic basis. We performed a genome-wide quantitative trait linkage scan for loci influencing BMI in 573 pedigrees from the U.K.

View Article and Find Full Text PDF

It is well established that gene interactions influence common human diseases, but to date linkage studies have been constrained to searching for single genes across the genome. We applied a novel approach to uncover significant gene-gene interactions in a systematic two-dimensional (2D) genome-scan of essential hypertension. The study cohort comprised 2076 affected sib-pairs and 66 affected half-sib-pairs of the British Genetics of HyperTension study.

View Article and Find Full Text PDF

The insulin-degrading enzyme is responsible for the intracellular proteolysis of insulin. Its gene IDE is located on chromosome 10, in an area with suggestive linkage to type 2 diabetes and related phenotypes. Due to the impact of genetic variants of this gene in rodents and the function of its protein product, it has been proposed as a candidate gene for type 2 diabetes.

View Article and Find Full Text PDF

The two-stage linkage mapping protocol for complex traits (a primary genome scan with low marker density followed by the high-density genotyping around linkage peaks) is a near-universal practice. The behavior (an increase or a decrease) of the peak upon such fine mapping frequently leads to inferences regarding the veracity of the primary scan finding, namely a true, or a false, positive. We examined by simulation, under the null hypothesis of no linkage and the alternative hypothesis of true linkage, the inferences that can be made regarding the posterior probability of linkage given either a peak increase, or alternatively, a peak decrease, following fine mapping.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a complex trait with a sibling relative risk (lambda(sibs)) between 18 and 36. We report a multistage genome scan of 552 sibling pairs from 442 families, the largest MS family sample assessed for linkage. The first stage consisted of a genome scan for linkage with 498 microsatellite markers at an average spacing of 7 cM in 219 sibling pairs.

View Article and Find Full Text PDF

Additional information on genetic susceptibility effects relevant to type 2 diabetes pathogenesis can be extracted from existing genome scans by extending examination to related phenotypes such as age at disease onset. In this study, we report the reanalysis of data from 573 U.K.

View Article and Find Full Text PDF

Positional cloning is expected to identify novel susceptibility genes underlying complex traits, but replication of genome-wide linkage scan findings has proven erratic. To improve our ability to detect and prioritize chromosomal regions containing type 2 diabetes susceptibility genes, the GIFT consortium has implemented a meta-analysis of four scans conducted in European samples. These included the Botnia I and Botnia II scans, with respectively 58 and 353 pedigrees from Finland and Sweden, the Warren 2 scan performed in 573 multiplex sibships from the UK, and a scan of 143 families from France.

View Article and Find Full Text PDF