Publications by authors named "Steven Whyard"

Biliary atresia (BA) is a rare neonatal disease with unknown causes. Approximately 10% of BA cases develop in utero with other congenital defects that span a large spectrum of disease variations, including degeneration of the gall bladder and bile duct as well as malformation of the liver, intestines, and kidneys. Similar developmental alterations are manifested in a unique animal model, the sea lamprey (), in which BA occurs naturally during metamorphosis.

View Article and Find Full Text PDF

Insects face diverse biotic and abiotic stresses that can affect their survival. Many of these stressors impact cellular metabolism, often resulting in increased accumulation of reactive oxygen species (ROS). Consequently, insects will respond to these stressors by increasing antioxidant activity and increased production of heat shock proteins (HSPs).

View Article and Find Full Text PDF

Background: Biliary atresia (BA) is a human infant disease with inflammatory fibrous obstructions in the bile ducts and is the most common cause for pediatric liver transplantation. In contrast, the sea lamprey undergoes developmental BA with transient cholestasis and fibrosis during metamorphosis, but emerges as a fecund adult. Therefore, sea lamprey liver metamorphosis may serve as an etiological model for human BA and provide pivotal information for hepatobiliary transformation and possible therapeutics.

View Article and Find Full Text PDF
Article Synopsis
  • Lampreys are a type of fish that split from other fish about 500 million years ago and have a unique way of developing their sexual characteristics.
  • This study looked at how certain genes work in two types of lampreys (one that sucks blood and one that doesn't) during the time they are developing into females.
  • Researchers found specific genes that seem to help with female development and reproduction, which hadn't been studied in lampreys before.
View Article and Find Full Text PDF
Article Synopsis
  • The sea lamprey is a harmful parasite that hurts fish populations in the Great Lakes.
  • Scientists are looking for better ways to control lampreys, using a method called RNA interference (RNAi) that targets specific genes in lampreys.
  • This study showed that they could successfully reduce certain lamprey genes using special RNA treatments, which could help create safe ways to control lampreys without harming other fish.
View Article and Find Full Text PDF

RNA interference has already proven itself to be a highly versatile molecular biology tool for understanding gene function in a limited number of insect species, but its widespread use in other species will be dependent on the development of easier methods of double-stranded RNA (dsRNA) delivery. This study demonstrates that RNA interference can be induced in the mosquito Aedes aegypti L. (Diptera: Culicidae) simply by soaking larvae in a solution of dsRNA for two hours.

View Article and Find Full Text PDF

Carbon dioxide (CO(2)) is an important long-range chemosensory cue used by blood-feeding female mosquitoes to find their hosts. The CO(2) receptor in Drosophila melanogaster was previously determined to be a heterodimer comprised of two gustatory receptor (Gr) proteins, DmGr21a and DmGr63a. In the mosquito Aedes aegypti, two putative orthologous genes, AaGr1 and AaGr3, were identified in the genome database, along with an apparent paralogue of AaGr1, AaGr2.

View Article and Find Full Text PDF
Article Synopsis
  • * A review of over 150 RNAi experiments reveals that RNAi is most effective in the Saturniidae family and immunity-related genes, while epidermal gene expression is more challenging to silence.
  • * The study highlights the need for more research on RNAi mechanisms in Lepidoptera and its links to immune responses, with ongoing data collection to improve understanding through a public database.
View Article and Find Full Text PDF

A serious shortcoming of many insecticides is that they can kill non-target species. To address this issue, we harnessed the sequence specificity of RNA interference (RNAi) to design orally-delivered double-stranded (ds) RNAs that selectively killed target species. Fruit flies (Drosophila melanogaster), flour beetles (Tribolium castaneum), pea aphids (Acyrthosiphon pisum), and tobacco hornworms (Manduca sexta) were selectively killed when fed species-specific dsRNA targeting vATPase transcripts.

View Article and Find Full Text PDF

With twelve Drosophila genomes now sequenced, there is a growing need to develop higher-throughput methods for identifying the functions of the many newly identified genes. Genetic transformation and RNA interference are two technologies that have been used extensively to facilitate gene-function studies in Drosophila melanogaster, to introduce genes or block the expression of endogenous genes, respectively. Both of these technologies typically require the delivery of nucleic acids into developing insect embryos, and virtually all studies to date have relied on microinjection as the DNA delivery method of choice.

View Article and Find Full Text PDF

Bactrocera tryoni is a serious pest of horticulture in eastern Australia. Here we review molecular data relevant to pest status and development of a transformation system for this species. The development of transformation vectors for non-drosophilid insects has opened the door to the possibility of improving the sterile insect technique (SIT), by genetically engineering factory strains of pest insects to produce male-only broods.

View Article and Find Full Text PDF

A group of transposons, named maT, with characteristics intermediate between mariner and Tc1 transposons, is described. Two defective genomic copies of MdmaT from the housefly Musca domestica, with 85% identity, were found flanking and imbedded in the MdalphaE7 esterase gene involved in organophosphate insecticide resistance. Two cDNA clones, with 99% identity to each other and 72%-89% identity to the genomic copies were also obtained, but both represented truncated versions of the putative open reading frame.

View Article and Find Full Text PDF