Publications by authors named "Steven W de Jager"

The aim of our study was to compare primary three-dimensional (3D) and primary two-dimensional (2D) review methods for CT colonography with regard to polyp detection and perceptive errors. CT colonography studies of 77 patients were read twice by three reviewers, first with a primary 3D method and then with a primary 2D method. Mean numbers of true and false positives, patient sensitivity and specificity and perceptive errors were calculated with colonoscopy as a reference standard.

View Article and Find Full Text PDF

Background & Aims: To date, computed tomographic (CT) colonography has been compared with an imperfect test, colonoscopy, and has been mainly assessed in patients with positive screening test results or symptoms. Therefore, the available data may not apply to screening of patients with a personal or family history of colorectal polyps or cancer (increased risk). We prospectively investigated the ability of CT colonography to identify individuals with large (>or=10 mm) colorectal polyps in consecutive patients at increased risk for colorectal cancer.

View Article and Find Full Text PDF

Background: Monitoring of myogenic motor evoked potentials to transcranial stimulation (tcMEPs) is clinically used to assess motor pathway function during aortic and spinal procedures that carry a risk of spinal cord ischemia (SCI). Although tcMEPs presumably detect SCI before irreversible neuronal deficit occurs, and prolonged reduction of tcMEP signals is thought to be associated with impending spinal cord damage, experimental evidence to support this concept has not been provided. In this study, histopathologic and neurologic outcome was examined in a porcine model of SCI after different durations of intraoperative loss of tcMEP signals.

View Article and Find Full Text PDF

Inhibition of neurotoxic events that lead to delayed cellular damage may prevent motor function loss after transient spinal cord ischemia. An important effect of the neuroprotective substance aminoguanidine (AG) is the inhibition of inducible nitric oxide synthase (iNOS), a perpetrator of focal ischemic damage. The authors studied the protective effects of AG on hind limb motor function and histopathologic outcome in an experimental model for spinal cord ischemia, and related these findings to the protein content of iNOS in the spinal cord.

View Article and Find Full Text PDF