Forecasting population decline to a certain critical threshold (the quasi-extinction risk) is one of the central objectives of population viability analysis (PVA), and such predictions figure prominently in the decisions of major conservation organizations. In this paper, we argue that accurate forecasting of a population's quasi-extinction risk does not necessarily require knowledge of the underlying biological mechanisms. Because of the stochastic and multiplicative nature of population growth, the ensemble behaviour of population trajectories converges to common statistical forms across a wide variety of stochastic population processes.
View Article and Find Full Text PDFSingle species aggregations are a commonly observed phenomenon. One potential explanation for these aggregations is provided by the selfish herd hypothesis, which states that aggregations result from individual efforts to reduce personnel predation risk at the expense of group-mates. Not all movement rules based on the selfish herd hypothesis are consistent with observed animal behavior.
View Article and Find Full Text PDFThe selfish herd hypothesis predicts that aggregations form because individuals move toward one another to minimize their own predation risk. The "dilemma of the selfish herd" is that movement rules that are easy for individuals to follow, fail to produce true aggregations, while rules that produce aggregations require individual behavior so complex that one may doubt most animals can follow them. If natural selection at the individual level is responsible for herding behavior, a solution to the dilemma must exist.
View Article and Find Full Text PDFHeterogeneous, "aggregated" patterns in the spatial distributions of individuals are almost universal across living organisms, from bacteria to higher vertebrates. Whereas specific features of aggregations are often visually striking to human eyes, a heuristic analysis based on human vision is usually not sufficient to answer fundamental questions about how and why organisms aggregate. What are the individual-level behavioral traits that give rise to these features? When qualitatively similar spatial patterns arise from purely physical mechanisms, are these patterns in organisms biologically significant, or are they simply epiphenomena that are likely characteristics of any set of interacting autonomous individuals? If specific features of spatial aggregations do confer advantages or disadvantages in the fitness of group members, how has evolution operated to shape individual behavior in balancing costs and benefits at the individual and group levels? Mathematical models of social behaviors such as schooling in fishes provide a promising avenue to address some of these questions.
View Article and Find Full Text PDF