The molecule eugenol was extracted from cloves via steam-distillation, and its rotational spectrum from 3-18 GHz was acquired with a chirped-pulsed Fourier transform microwave spectrometer. This spectrum was analyzed via two separate methods in parallel, one employing several microwave-microwave double resonance measurements and the other using a newly written version of the Autofit program. Both methods yielded rotational constants in excellent agreement with predictions from ab initio calculations.
View Article and Find Full Text PDFMicrowave-millimeter/submillimeter wave double-resonance spectroscopy has been developed with the use of technology typically employed in chirped pulse Fourier transform microwave spectroscopy and fast-sweep direct absorption (sub)millimeter-wave spectroscopy. This technique offers the high sensitivity provided by millimeter/submillimeter fast-sweep techniques with the rapid data acquisition offered by chirped pulse Fourier transform microwave spectrometers. Rather than detecting the movement of population as is observed in a traditional double-resonance experiment, instead we detected the splitting of spectral lines arising from the AC Stark effect.
View Article and Find Full Text PDFDirect absorption spectroscopy has been the mainstay for spectral acquisition in the millimeter and submillimeter wavelength regimes because of the sensitivity offered by standard hot electron bolometer detectors. However, this approach is limited in its utility because of the slow spectral acquisition speeds. A few rapid acquisition techniques that offer reasonable levels of sensitivity have been developed, but these rely on specialized and costly equipment.
View Article and Find Full Text PDFThe conformational equilibrium of the general anesthetic propofol (2,6-diisopropylphenol) has been studied in a supersonic expansion using broadband chirped-pulse microwave spectroscopy. Three conformers originated by the combined internal rotation of the hydroxyl and the two isopropyl groups have been detected in the jet-cooled rotational spectrum. The most stable conformer exhibits tunneling splittings associated with the internal rotation of the hydroxyl group, from which we determined the torsional potential and barrier heights (905-940 cm(-1)).
View Article and Find Full Text PDFThe rotational spectrum of n-propanol (n-CH(3)CH(2)CH(2)OH) was studied with several techniques of contemporary broadband rotational spectroscopy at frequencies from 8 to 550 GHz. Rotational transitions in all five conformers of the molecule, Gt, Gg, Gg', Tt, and Tg, have been unambiguously assigned. Over 6700 lines of the Gt, Gg, and Gg' species, for quantum number values reaching K(a) = 33 and J = 67, were fitted in a joint analysis leading to the determination of DeltaE(Gg-Gt) = 47.
View Article and Find Full Text PDFDesigns for a broadband chirped pulse Fourier transform microwave (CP-FTMW) spectrometer are presented. The spectrometer is capable of measuring the 7-18 GHz region of a rotational spectrum in a single data acquisition. One design uses a 4.
View Article and Find Full Text PDFUltrafast mid-IR transient absorption spectroscopy has been used to study the vibrational dynamics of hydrogen-bonded cyclic dimers of trifluoroacetic acid and formic acid in both the gas and solution phases (0.05 M in CCl(4)). Ultrafast excitation of the broad O-H cyclic dimer band leads, in the gas phase, to large-scale structural changes of the dimer creating a species with a distinct free O-H stretching band on 20 ps and 200 ps timescales.
View Article and Find Full Text PDFTwo-photon photoemission of image potential states above monolayers of p-xylene/Ag(111) shows that electrons with different momenta have very different rise and decay rates as a function of parallel momentum. The dynamics are due to energy and momentum loss (intraband relaxation), which we model as a stochastic process isomorphic to the overdamped motion of a harmonic oscillator. The method extracts a friction coefficient from the data which can be explained by electron-electron scattering in a formalism based on the Lindhard dielectric function.
View Article and Find Full Text PDFThe thickness-dependent interfacial band structure was determined for thin films of C(60) on Ag(111) by angle-resolved two-photon photoemission spectroscopy. Dispersions of molecular-orbital derived bands (HOMO, LUMO+1, and LUMO+2) were acquired, and limits were placed on their possible effective masses. A group theoretic approach is also incorporated to further understand the properties of these states.
View Article and Find Full Text PDF