Mid-level visual processing represents a crucial stage between basic sensory input and higher-level object recognition. The conventional model posits that fundamental visual qualities like color and motion are processed in specialized, retinotopic brain regions (e.g.
View Article and Find Full Text PDFWe revisit the hypotheses that conservatism positively correlates with amygdala and negatively with anterior cingulate cortex (ACC) gray matter volume.Using diverse measures of ideology and a large and representative sample (Amsterdam Open MRI Collection [n = 928]), we replicate a small positive relationship between amygdala volume and conservatism. However, we fail to find consistent evidence in support of the ideology-ACC volume link.
View Article and Find Full Text PDFVisual perception involves binding of distinct features into a unified percept. Although traditional theories link feature binding to time-consuming recurrent processes, Holcombe and Cavanagh (2001) demonstrated ultrafast, early binding of features that belong to the same object. The task required binding of orientation and luminance within an exceptionally short presentation time.
View Article and Find Full Text PDFDeep convolutional neural networks (DCNNs) are able to partially predict brain activity during object categorization tasks, but factors contributing to this predictive power are not fully understood. Our study aimed to investigate the factors contributing to the predictive power of DCNNs in object categorization tasks. We compared the activity of four DCNN architectures with EEG recordings obtained from 62 human participants during an object categorization task.
View Article and Find Full Text PDFHumans can quickly recognize objects in a dynamically changing world. This ability is showcased by the fact that observers succeed at recognizing objects in rapidly changing image sequences, at up to 13 ms/image. To date, the mechanisms that govern dynamic object recognition remain poorly understood.
View Article and Find Full Text PDFModels are the hallmark of mature scientific inquiry. In psychology, this maturity has been reached in a pervasive question-what models best represent facial expressions of emotion? Several hypotheses propose different combinations of facial movements [action units (AUs)] as best representing the six basic emotions and four conversational signals across cultures. We developed a new framework to formalize such hypotheses as predictive models, compare their ability to predict human emotion categorizations in Western and East Asian cultures, explain the causal role of individual AUs, and explore updated, culture-accented models that improve performance by reducing a prevalent Western bias.
View Article and Find Full Text PDFRecurrent processing is a crucial feature in human visual processing supporting perceptual grouping, figure-ground segmentation, and recognition under challenging conditions. There is a clear need to incorporate recurrent processing in deep convolutional neural networks, but the computations underlying recurrent processing remain unclear. In this article, we tested a form of recurrence in deep residual networks (ResNets) to capture recurrent processing signals in the human brain.
View Article and Find Full Text PDFArousal levels strongly affect task performance. Yet, what arousal level is optimal for a task depends on its difficulty. Easy task performance peaks at higher arousal levels, whereas performance on difficult tasks displays an inverted U-shape relationship with arousal, peaking at medium arousal levels, an observation first made by Yerkes and Dodson in 1908.
View Article and Find Full Text PDFSpatial attention enhances sensory processing of goal-relevant information and improves perceptual sensitivity. Yet, the specific neural mechanisms underlying the effects of spatial attention on performance are still contested. Here, we examine different attention mechanisms in spiking deep convolutional neural networks.
View Article and Find Full Text PDFMost of our knowledge about human emotional memory comes from animal research. Based on this work, the amygdala is often labeled the brain's "fear center", but it is unclear to what degree neural circuitries underlying fear and extinction learning are conserved across species. Neuroimaging studies in humans yield conflicting findings, with many studies failing to show amygdala activation in response to learned threat.
View Article and Find Full Text PDFObject and scene recognition both require mapping of incoming sensory information to existing conceptual knowledge about the world. A notable finding in brain-damaged patients is that they may show differentially impaired performance for specific categories, such as for "living exemplars". While numerous patients with category-specific impairments have been reported, the explanations for these deficits remain controversial.
View Article and Find Full Text PDFAlthough feedforward activity may suffice for recognizing objects in isolation, additional visual operations that aid object recognition might be needed for real-world scenes. One such additional operation is figure-ground segmentation, extracting the relevant features and locations of the target object while ignoring irrelevant features. In this study of 60 human participants (female and male), we show objects on backgrounds of increasing complexity to investigate whether recurrent computations are increasingly important for segmenting objects from more complex backgrounds.
View Article and Find Full Text PDFWe present the Amsterdam Open MRI Collection (AOMIC): three datasets with multimodal (3 T) MRI data including structural (T1-weighted), diffusion-weighted, and (resting-state and task-based) functional BOLD MRI data, as well as detailed demographics and psychometric variables from a large set of healthy participants (N = 928, N = 226, and N = 216). Notably, task-based fMRI was collected during various robust paradigms (targeting naturalistic vision, emotion perception, working memory, face perception, cognitive conflict and control, and response inhibition) for which extensively annotated event-files are available. For each dataset and data modality, we provide the data in both raw and preprocessed form (both compliant with the Brain Imaging Data Structure), which were subjected to extensive (automated and manual) quality control.
View Article and Find Full Text PDFPeople often seek out stories, videos or images that detail death, violence or harm. Considering the ubiquity of this behavior, it is surprising that we know very little about the neural circuits involved in choosing negative information. Using fMRI, the present study shows that choosing intensely negative stimuli engages similar brain regions as those that support extrinsic incentives and "regular" curiosity.
View Article and Find Full Text PDFFeed-forward deep convolutional neural networks (DCNNs) are, under specific conditions, matching and even surpassing human performance in object recognition in natural scenes. This performance suggests that the analysis of a loose collection of image features could support the recognition of natural object categories, without dedicated systems to solve specific visual subtasks. Research in humans however suggests that while feedforward activity may suffice for sparse scenes with isolated objects, additional visual operations ('routines') that aid the recognition process (e.
View Article and Find Full Text PDFA fundamental component of interacting with our environment is gathering and interpretation of sensory information. When investigating how perceptual information influences decision-making, most researchers have relied on manipulated or unnatural information as perceptual input, resulting in findings that may not generalize to real-world scenes. Unlike simplified, artificial stimuli, real-world scenes contain low-level regularities that are informative about the structural complexity, which the brain could exploit.
View Article and Find Full Text PDFCompetitions are part and parcel of daily life and require people to invest time and energy to gain advantage over others and to avoid (the risk of) falling behind. Whereas the behavioral mechanisms underlying competition are well documented, its neurocognitive underpinnings remain poorly understood. We addressed this using neuroimaging and computational modeling of individual investment decisions aimed at exploiting one's counterpart ("attack") or at protecting against exploitation by one's counterpart ("defense").
View Article and Find Full Text PDFBackground: Smoking and alcohol use have been associated with common genetic variants in multiple loci. Rare variants within these loci hold promise in the identification of biological mechanisms in substance use. Exome arrays and genotype imputation can now efficiently genotype rare nonsynonymous and loss of function variants.
View Article and Find Full Text PDFArtificial Neural Networks (ANNs) are bio-inspired models of neural computation that have proven highly effective. Still, ANNs lack a natural notion of time, and neural units in ANNs exchange analog values in a frame-based manner, a computationally and energetically inefficient form of communication. This contrasts sharply with biological neurons that communicate sparingly and efficiently using isomorphic binary spikes.
View Article and Find Full Text PDFSmoking is a major heritable and modifiable risk factor for many diseases, including cancer, common respiratory disorders and cardiovascular diseases. Fourteen genetic loci have previously been associated with smoking behaviour-related traits. We tested up to 235,116 single nucleotide variants (SNVs) on the exome-array for association with smoking initiation, cigarettes per day, pack-years, and smoking cessation in a fixed effects meta-analysis of up to 61 studies (up to 346,813 participants).
View Article and Find Full Text PDFSelective brain responses to objects arise within a few hundreds of milliseconds of neural processing, suggesting that visual object recognition is mediated by rapid feed-forward activations. Yet disruption of neural responses in early visual cortex beyond feed-forward processing stages affects object recognition performance. Here, we unite these discrepant findings by reporting that object recognition involves enhanced feedback activity (recurrent processing within early visual cortex) when target objects are embedded in natural scenes that are characterized by high complexity.
View Article and Find Full Text PDFOver the past decade, multivariate "decoding analyses" have become a popular alternative to traditional mass-univariate analyses in neuroimaging research. However, a fundamental limitation of using decoding analyses is that it remains ambiguous which source of information drives decoding performance, which becomes problematic when the to-be-decoded variable is confounded by variables that are not of primary interest. In this study, we use a comprehensive set of simulations as well as analyses of empirical data to evaluate two methods that were previously proposed and used to control for confounding variables in decoding analyses: post hoc counterbalancing and confound regression.
View Article and Find Full Text PDFEven though human fear-conditioning involves affective learning as well as expectancy learning, most studies assess only one of the two distinct processes. Commonly used read-outs of associative fear learning are the fear-potentiated startle reflex (FPS), pupil dilation and US-expectancy ratings. FPS is thought to reflect the affective aspect of fear learning, while pupil dilation reflects a general arousal response.
View Article and Find Full Text PDFThe human eye can provide powerful insights into the emotions and intentions of others; however, how pupillary changes influence observers' behavior remains largely unknown. The present fMRI-pupillometry study revealed that when the pupils of interacting partners synchronously dilate, trust is promoted, which suggests that pupil mimicry affiliates people. Here we provide evidence that pupil mimicry modulates trust decisions through the activation of the theory-of-mind network (precuneus, temporo-parietal junction, superior temporal sulcus, and medial prefrontal cortex).
View Article and Find Full Text PDF