Publications by authors named "Steven S Xu"

Fusarium head blight (FHB), mainly caused by Fusarium graminearum and Fusarium culmorum, is a major wheat disease. Significant efforts have been made to improve resistance to FHB in bread wheat (Triticum aestivum), but more work is needed for durum wheat (Triticum turgidum spp. durum).

View Article and Find Full Text PDF

Soil salinity adversely affects plant growth and development, reducing the yield of most crops, including wheat. The highly salt-tolerant wheat germplasm lines W4909 and W4910 were derived from a cross between two moderately salt-tolerant lines, the Chinese Spring (CS)/ disomic addition line AJDAj5 (AJ) and the Ph-inhibitor line (Ph-I) derived from CS/. Molecular markers for gene introgressions in W4909 and W4910 were not reported.

View Article and Find Full Text PDF

Robust QTLs conferring resistance to bacterial leaf streak in wheat were mapped on chromosomes 3B and 5A from the variety Boost and on chromosome 7D from the synthetic wheat line W-7984. Bacterial leaf streak (BLS), caused by Xanthomonas translucens pv. undulosa poses a significant threat to global wheat production.

View Article and Find Full Text PDF

Septoria nodorum blotch is an important disease of both durum and hard red spring wheat (HRSW) worldwide. The disease is caused by the necrotrophic fungal pathogen Parastagonospora nodorum when compatible gene-for-gene interactions occur between pathogen-produced necrotrophic effectors (NEs) and corresponding host sensitivity genes. To date, nine sensitivity gene-NE interactions have been identified, but there is little information available regarding their overall frequency in durum and HRSW.

View Article and Find Full Text PDF

The Hessian fly, Mayetiola destructor (Say) belonging to the order Diptera (family: Cecidomyiidae), is a destructive pest of host wheat (Triticum aestivum L.) causing significant economic losses. Although planting resistant wheat cultivars harboring an effective Hessian fly resistance gene (H) is the most economical and environmentally friendly pest management strategy, it imposes selection pressure on the insect populations and can lead to the evolution of Hessian fly virulence.

View Article and Find Full Text PDF

Bread wheat (Triticum aestivum) is a globally dominant crop and major source of calories and proteins for the human diet. Compared with its wild ancestors, modern bread wheat shows lower genetic diversity, caused by polyploidisation, domestication and breeding bottlenecks. Wild wheat relatives represent genetic reservoirs, and harbour diversity and beneficial alleles that have not been incorporated into bread wheat.

View Article and Find Full Text PDF

A total of 65 SNPs associated with resistance to tan spot and septoria nodorum blotch were identified in a panel of 180 cultivated emmer accessions through association mapping Tan spot and septoria nodorum blotch (SNB) are foliar diseases caused by the respective fungal pathogens Pyrenophora tritici-repentis and Parastagonospora nodorum that affect global wheat production. To find new sources of resistance, we evaluated a panel of 180 cultivated emmer wheat (Triticum turgidum ssp. dicoccum) accessions for reactions to four P.

View Article and Find Full Text PDF

Septoria nodorum blotch (SNB), caused by Parastagonospora nodorum, is a disease of durum and common wheat initiated by the recognition of pathogen-produced necrotrophic effectors (NEs) by specific wheat genes. The wheat gene Snn1 was previously cloned, and it encodes a wall-associated kinase that directly interacts with the NE SnTox1 leading to programmed cell death and ultimately the development of SNB. Here, sequence analysis of Snn1 from 114 accessions including diploid, tetraploid, and hexaploid wheat species revealed that some wheat lines possess two copies of Snn1 (designated Snn1-B1 and Snn1-B2) approximately 120 kb apart.

View Article and Find Full Text PDF

Sr67 is a new stem rust resistance gene that represents a new resource for breeding stem rust resistant wheat cultivars Re-appearance of stem rust disease, caused by the fungal pathogen Puccinia graminis f. sp. tritici (Pgt), in different parts of Europe emphasized the need to develop wheat varieties with effective resistance to local Pgt populations and exotic threats.

View Article and Find Full Text PDF

Yield and quality tests of wheat lines derived from RWG35 show they carry little, or no linkage drag and are the preferred source of Sr47 for stem rust resistance. Three durum wheat (Triticum turgidum L. subsp.

View Article and Find Full Text PDF

Tan spot, caused by the necrotrophic fungal pathogen (Ptr), is an important disease of durum and common wheat worldwide. Compared with common wheat, less is known about the genetics and molecular basis of tan spot resistance in durum wheat. We evaluated 510 durum lines from the Global Durum Wheat Panel (GDP) for sensitivity to the necrotrophic effectors (NEs) Ptr ToxA and Ptr ToxB and for reaction to Ptr isolates representing races 1 to 5.

View Article and Find Full Text PDF
Article Synopsis
  • Identified fifteen loci related to seedling resistance and eleven loci for adult resistance against leaf rust in cultivated emmer wheat, with many being novel
  • The study highlights the risk posed by the Puccinia triticina race BBBQD to durum wheat production, especially in North America where resistance sources are scarce
  • A total of 24 accessions showed seedling resistance and 9 exhibited adult resistance, with ongoing research aiming to enhance durum germplasm using these resistant emmer accessions
View Article and Find Full Text PDF

Crop yield gains are needed to keep pace with a growing global population and decreasing resources to produce food. Cultivated emmer wheat is a progenitor of durum wheat and a useful source of genetic variation for trait improvement in durum. Here, we evaluated a recombinant inbred line population derived from a cross between the North Dakota durum wheat variety Divide and the cultivated emmer wheat accession PI 272527 consisting of 219 lines.

View Article and Find Full Text PDF

Stem rust resistance genes, SrRL5271 and Sr672.1 as well as SrCPI110651, from Aegilops tauschii, the diploid D genome progenitor of wheat, are sequence variants of Sr46 differing by 1-2 nucleotides leading to non-synonymous amino acid substitutions. The Aegilops tauschii (wheat D-genome progenitor) accessions RL 5271 and CPI110672 were identified as resistant to multiple races (including the Ug99) of the wheat stem rust pathogen Puccinia graminis f.

View Article and Find Full Text PDF

Resistance breeding is an effective approach against wheat stem rust caused by Puccinia graminis f. sp. tritici (Pgt).

View Article and Find Full Text PDF

Parastagonospora nodorum is an economically important necrotrophic fungal pathogen of wheat. Parastagonospora nodorum secretes necrotrophic effectors that target wheat susceptibility genes to induce programmed cell death (PCD). In this study, we cloned and functionally validated SnTox5 and characterized its role in pathogenesis.

View Article and Find Full Text PDF

Parastagonospora nodorum is a fungal pathogen of wheat. As a necrotrophic specialist, it deploys effector proteins that target dominant host susceptibility genes to elicit programmed cell death (PCD). Here we identify and functionally validate the effector targeting the host susceptibility genes Snn2, Snn6 and Snn7.

View Article and Find Full Text PDF

The resistance gene Sr13 is one of the most important genes in durum wheat for controlling stem rust caused by Puccinia graminis f. sp. tritici (Pgt).

View Article and Find Full Text PDF

Septoria nodorum blotch (SNB), a disease caused by the necrotrophic fungal pathogen Parastagonospora nodorum, is a threat to wheat (Triticum aestivum) production worldwide. Multiple inverse gene-for-gene interactions involving the recognition of necrotrophic effectors (NEs) by wheat sensitivity genes play major roles in causing SNB. One interaction involves the wheat gene Snn3 and the P.

View Article and Find Full Text PDF
Article Synopsis
  • Representative genetic collections help understand diversity and support breeding goals by identifying beneficial traits in crops.
  • The Global Durum Wheat Panel (GDP) includes 1,011 wheat accessions, capturing 94-97% of the genetic diversity from 2,500 tetraploid wheat samples, featuring a mix of modern and ancient strains.
  • Analysis shows high genetic diversity in modern wheat from specific breeding programs, with distinct genetic clusters identified, and key loci associated with important traits like plant height and quality, which can aid future breeding efforts.
View Article and Find Full Text PDF

We constructed a homoeologous recombination-based bin map of wheat chromosome 7B, providing a unique physical framework for further study of chromosome 7B and its homoeologues in wheat and its relatives. Homoeologous recombination leads to the dissection and diversification of the wheat genome. Advances in genome sequencing and genotyping have dramatically improved the efficacy and throughput of homoeologous recombination-based genome studies and alien introgression in wheat and its relatives.

View Article and Find Full Text PDF

The ascomycete fungus is the causal agent of tan spot of wheat. The disease can occur on both common wheat () and durum wheat (. ssp.

View Article and Find Full Text PDF