Publications by authors named "Steven Running"

Empirical vegetation indices derived from spectral reflectance data are widely used in remote sensing of the biosphere, as they represent robust proxies for canopy structure, leaf pigment content, and, subsequently, plant photosynthetic potential. Here, we generalize the broad family of commonly used vegetation indices by exploiting all higher-order relations between the spectral channels involved. This results in a higher sensitivity to vegetation biophysical and physiological parameters.

View Article and Find Full Text PDF

Remote sensing optical sensors onboard operational satellites cannot have high spectral, spatial and temporal resolutions simultaneously. In addition, clouds and aerosols can adversely affect the signal contaminating the land surface observations. We present a HIghly Scalable Temporal Adaptive Reflectance Fusion Model (HISTARFM) algorithm to combine multispectral images of different sensors to reduce noise and produce monthly gap free high resolution (30 m) observations over land.

View Article and Find Full Text PDF

Plant traits are both responsive to local climate and strong predictors of primary productivity. We hypothesized that future climate change might promote a shift in global plant traits resulting in changes in Gross Primary Productivity (GPP). We characterized the relationship between key plant traits, namely Specific Leaf Area (SLA), height, and seed mass, and local climate and primary productivity.

View Article and Find Full Text PDF

Stability in population dynamics is an emergent property of the interaction between direct and delayed density dependence, the strengths of which vary with environmental covariates. Analysis of variation across populations in the strength of direct and delayed density dependence can reveal variation in stability properties of populations at the species level. We examined the stability properties of 22 elk/red deer populations in a two-stage analysis.

View Article and Find Full Text PDF

Large-scale climate patterns control variability in the global carbon sink. In Europe, the North-Atlantic Oscillation (NAO) influences vegetation activity, however the East-Atlantic (EA) pattern is known to modulate NAO strength and location. Using observation-driven and modelled data sets, we show that multi-annual variability patterns of European Net Biome Productivity (NBP) are linked to anomalies in heat and water transport controlled by the NAO-EA interplay.

View Article and Find Full Text PDF

Recent studies showed that anomalous dry conditions and limited moisture supply roughly between 1998 and 2008, especially in the Southern Hemisphere, led to reduced vegetation productivity and ceased growth in land evapotranspiration (ET). However, natural variability of Earth's climate system can degrade capabilities for identifying climate trends. Here we produced a long-term (1982-2013) remote sensing based land ET record and investigated multidecadal changes in global ET and underlying causes.

View Article and Find Full Text PDF

Ongoing climate change can alter conditions for plant growth, in turn affecting ecological and social systems. While there have been considerable advances in understanding the physical aspects of climate change, comprehensive analyses integrating climate, biological, and social sciences are less common. Here we use climate projections under alternative mitigation scenarios to show how changes in environmental variables that limit plant growth could impact ecosystems and people.

View Article and Find Full Text PDF

The land and ocean act as a sink for fossil-fuel emissions, thereby slowing the rise of atmospheric carbon dioxide concentrations. Although the uptake of carbon by oceanic and terrestrial processes has kept pace with accelerating carbon dioxide emissions until now, atmospheric carbon dioxide concentrations exhibit a large variability on interannual timescales, considered to be driven primarily by terrestrial ecosystem processes dominated by tropical rainforests. We use a terrestrial biogeochemical model, atmospheric carbon dioxide inversion and global carbon budget accounting methods to investigate the evolution of the terrestrial carbon sink over the past 30 years, with a focus on the underlying mechanisms responsible for the exceptionally large land carbon sink reported in 2011 (ref.

View Article and Find Full Text PDF

Many protected areas may not be adequately safeguarding biodiversity from human activities on surrounding lands and global change. The magnitude of such change agents and the sensitivity of ecosystems to these agents vary among protected areas. Thus, there is a need to assess vulnerability across networks of protected areas to determine those most at risk and to lay the basis for developing effective adaptation strategies.

View Article and Find Full Text PDF

Nitrogen (N) and phosphorus (P) availability regulate plant productivity throughout the terrestrial biosphere, influencing the patterns and magnitude of net primary production (NPP) by land plants both now and into the future. These nutrients enter ecosystems via geologic and atmospheric pathways and are recycled to varying degrees through the plant-soil-microbe system via organic matter decay processes. However, the proportion of global NPP that can be attributed to new nutrient inputs versus recycled nutrients is unresolved, as are the large-scale patterns of variation across terrestrial ecosystems.

View Article and Find Full Text PDF

Most examples of seasonal mismatches in phenology span multiple trophic levels, with timing of animal reproduction, hibernation, or migration becoming detached from peak food supply. The consequences of such mismatches are difficult to link to specific future climate change scenarios because the responses across trophic levels have complex underlying climate drivers often confounded by other stressors. In contrast, seasonal coat color polyphenism creating camouflage against snow is a direct and potentially severe type of seasonal mismatch if crypsis becomes compromised by the animal being white when snow is absent.

View Article and Find Full Text PDF

United States (U.S.) energy policy includes an expectation that bioenergy will be a substantial future energy source.

View Article and Find Full Text PDF

Terrestrial net primary production (NPP) quantifies the amount of atmospheric carbon fixed by plants and accumulated as biomass. Previous studies have shown that climate constraints were relaxing with increasing temperature and solar radiation, allowing an upward trend in NPP from 1982 through 1999. The past decade (2000 to 2009) has been the warmest since instrumental measurements began, which could imply continued increases in NPP; however, our estimates suggest a reduction in the global NPP of 0.

View Article and Find Full Text PDF

Net primary productivity (NPP) is one of the major ecosystem products on which human societies rely heavily. However, rapid urban sprawl and its associated dense population and economic conditions have generated great pressure on natural resources, food security, and environments. It is valuable to understand how urban expansion and associated demographic and economic conditions affect ecosystem functions.

View Article and Find Full Text PDF

Climate change has altered the environment in which forests grow, and climate change models predict more severe alterations to come. Forests have already responded to these changes, and the future temperature and precipitation scenarios are of foremost concern, especially in the mountainous western United States, where forests occur in the dry environments that interface with grasslands. The objective of this study was to understand the trade-offs between temperature and water controls on these forested sites in the context of available climate projections.

View Article and Find Full Text PDF

The timing, location, and magnitude of major disturbance events are currently major uncertainties in the global carbon cycle. Accurate information on the location, spatial extent, and duration of disturbance at the continental scale is needed to evaluate the ecosystem impacts of land cover changes due to wildfire, insect epidemics, flooding, climate change, and human-triggered land use. This paper describes an algorithm developed to serve as an automated, economical, systematic disturbance detection index for global application using Moderate Resolution Imaging Spectroradiometer (MODIS)/Aqua Land Surface Temperature (LST) and Terra/MODIS Enhanced Vegetation Index (EVI) data from 2003 to 2004.

View Article and Find Full Text PDF

Despite early speculation to the contrary, all tropical forests studied to date display seasonal variations in the presence of new leaves, flowers, and fruits. Past studies were focused on the timing of phenological events and their cues but not on the accompanying changes in leaf area that regulate vegetation-atmosphere exchanges of energy, momentum, and mass. Here we report, from analysis of 5 years of recent satellite data, seasonal swings in green leaf area of approximately 25% in a majority of the Amazon rainforests.

View Article and Find Full Text PDF

We used a terrestrial ecosystem process model, BIOME-BGC, to investigate historical climate change and fire disturbance effects on regional carbon and water budgets within a 357,500 km(2) portion of the Canadian boreal forest. Historical patterns of increasing atmospheric CO2, climate change, and regional fire activity were used as model drivers to evaluate the relative effects of these impacts to spatial patterns and temporal trends in forest net primary production (NPP) and evapotranspiration (ET). Historical trends of increasing atmospheric CO2 resulted in overall 13% and 5% increases in annual NPP and ET from 1994 to 1996, respectively.

View Article and Find Full Text PDF

Turf grasses are ubiquitous in the urban landscape of the United States and are often associated with various types of environmental impacts, especially on water resources, yet there have been limited efforts to quantify their total surface and ecosystem functioning, such as their total impact on the continental water budget and potential net ecosystem exchange (NEE). In this study, relating turf grass area to an estimate of fractional impervious surface area, it was calculated that potentially 163,800 km2 (+/- 35,850 km2) of land are cultivated with turf grasses in the continental United States, an area three times larger than that of any irrigated crop. Using the Biome-BGC ecosystem process model, the growth of warm-season and cool-season turf grasses was modeled at a number of sites across the 48 conterminous states under different management scenarios, simulating potential carbon and water fluxes as if the entire turf surface was to be managed like a well-maintained lawn.

View Article and Find Full Text PDF

The relationship between photosynthesis and accumulated cold degree days (CDD) over the late growing season was examined at the shoot, ecosystem and landscape scales in a boreal cutover in eastern Canada predominated by black spruce (Picea mariana Mill. BSP), lowbush blueberry (Vaccinium angustifolium Ait.) and sheep laurel (Kalmia angustifolia L.

View Article and Find Full Text PDF

Some saplings and shrubs growing in the understory of temperate deciduous forests extend their periods of leaf display beyond that of the overstory, resulting in periods when understory radiation, and hence productivity, are not limited by the overstory canopy. To assess the importance of the duration of leaf display on the productivity of understory and overstory trees of deciduous forests in the north eastern United States, we applied the simulation model, BIOME-BGC with climate data for Hubbard Brook Experimental Forest, New Hampshire, USA and mean ecophysiological data for species of deciduous, temperate forests. Extension of the overstory leaf display period increased overstory leaf area index (LAI) by only 3 to 4% and productivity by only 2 to 4%.

View Article and Find Full Text PDF