Publications by authors named "Steven Rodems"

Alagille syndrome (ALGS) is an autosomal dominant, multisystemic disorder due to haploinsufficiency in JAG1 or less frequently, mutations in NOTCH2. The disease has been difficult to diagnose and treat due to variable expression. The generation of this iPSC line (TRNDi036-A) carrying a heterozygous mutation (p.

View Article and Find Full Text PDF

NGLY1 deficiency is an ultra-rare, autosomal recessive genetic disease caused by mutations in the gene encoding N-glycanase one that removes N-linked glycan. Patients with pathogenic mutations in NGLY1 have complex clinical symptoms including global developmental delay, motor disorder and liver dysfunction. To better understand the disease pathogenesis and the neurological symptoms of the NGLY1 deficiency we generated and characterized midbrain organoids using patient-derived iPSCs from two patients with distinct disease-causing mutations-one homozygous for p.

View Article and Find Full Text PDF

There are many neurological rare diseases where animal models have proven inadequate or do not currently exist. NGLY1 Deficiency, a congenital disorder of deglycosylation, is a rare disease that predominantly affects motor control, especially control of neuromuscular action. In this study, NGLY1-deficient, patient-derived induced pluripotent stem cells (iPSCs) were differentiated into motoneurons (MNs) to identify disease phenotypes analogous to clinical disease pathology with significant deficits apparent in the NGLY1-deficient lines compared to the control.

View Article and Find Full Text PDF

NGLY1 deficiency is a rare recessive genetic disease caused by mutations in the NGLY1 gene which codes for N-glycanase 1 (NGLY1). Here, we report the generation of two gene corrected iPSC lines using a patient-derived iPSC line (NCATS-CL6103) that carried a homozygous p.R401X mutation in the NGLY1 gene.

View Article and Find Full Text PDF

Advancements in treatment for the rare genetic disorder known as Alagille Syndrome (ALGS) have been regrettably slow. The large variety of mutations to the JAG1 and NOTCH2 genes which lead to ALGS pose a unique challenge for developing targeted treatments. Due to the central role of the Notch signaling pathway in several cancers, traditional treatment modalities which compensate for the loss in activity caused by mutation are rightly excluded.

View Article and Find Full Text PDF

Alagille syndrome (ALGS) is a rare autosomal dominant disorder caused by disruption of the Notch signaling pathway due to mutations in either JAGGED1 (JAG1) (ALGS type 1) or NOTCH2 (ALGS type 2). Loss of this signaling interferes with the development of many organs, but especially the liver. A human induced pluripotent stem cell (iPSC) line was generated from the fibroblasts of a patient with a p.

View Article and Find Full Text PDF

Alagille syndrome (ALGS) is a multisystem autosomal dominant disorder caused by defects in the Notch signaling pathway, including the mutation in JAGGED1 (JAG1) (ALGS type 1) or NOTCH2 (ALGS type 2). An induced pluripotent stem cell (iPSC) line was generated from the dermal fibroblasts of a 3-month-old patient with heterozygous mutation at JAG1 splicing site (Chr20: 10,629,709C>A) before exon 11. This iPSC model offers a useful resource for disease modeling to study the disease pathophysiology and to develop therapeutics for treatment of ALGS.

View Article and Find Full Text PDF

NGLY1 deficiency is a rare disorder caused by mutations in the NGLY1 gene which codes for the highly conserved N-glycanase1 (NGLY1). This enzyme functions in cytosolic deglycosylation of N- linked glycoproteins. An induced pluripotent stem cell (iPSC) line was generated from the dermal fibroblasts of a 2-year-old patient carrying compound heterozygous mutations, p.

View Article and Find Full Text PDF

Proteins are widely used as drug targets, enzyme substrates, and biomarkers for numerous diseases. The emerging demand for proteins quantitation has been increasing in multiple fields. Currently, there is still a big gap for high-throughput protein quantitation at intact protein level using label-free method.

View Article and Find Full Text PDF

NGLY1 deficiency is a rare inherited disorder caused by mutations in the NGLY1 gene encoding N-glycanase 1 that is a hydrolase for N-linked glycosylated proteins. An induced pluripotent stem cell (iPSC) line was generated from the dermal fibroblasts of a 16-year-old patient with homozygous mutation of p.R401X (c.

View Article and Find Full Text PDF

Neurological diseases such as Alzheimer's disease and Parkinson's disease are growing problems, as average life expectancy is increasing globally. Drug discovery for neurological disease remains a major challenge. Poor understanding of disease pathophysiology and incomplete representation of human disease in animal models hinder therapeutic drug development.

View Article and Find Full Text PDF

NGLY1 deficiency is a rare genetic disease caused by mutations in the NGLY1 gene that encodes N-glycanase 1. The disease phenotype in patient cells is unclear. A human induced pluripotent stem cell (iPSC) line was generated from skin dermal fibroblasts of a patient with NGLY1 deficiency that has compound heterozygous mutations of a p.

View Article and Find Full Text PDF

Glycosylation is a key posttranslational modification that tags protein to membranes, organelles, secretory pathways, and degradation. Aberrant protein glycosylation is present both in acquired diseases, such as cancer and neurodegeneration, and in congenital disorders of glycosylation (CDGs). Consequently, the ability to interrogate the activity of enzymes that can modify protein glycan moieties is key for drug discovery projects aimed at finding modulators of these enzymes.

View Article and Find Full Text PDF

Protein phosphorylation is one of the major regulatory mechanisms involved in signal-induced cellular events, including cell proliferation, apoptosis, and metabolism. Because many facets of biology are regulated by protein phosphorylation, aberrant kinase and/or phosphatase activity forms the basis for many different types of pathology. The disease relevance of protein kinases and phosphatases has led many pharmaceutical and biotechnology companies to expend significant resources in lead discovery programs for these two target classes.

View Article and Find Full Text PDF