Publications by authors named "Steven Ripp"

Transport of pathogenic bacteria from land surface to groundwater is largely influenced by rainfall intensity and geochemical and structural heterogeneities of subsurface sediments at different depths. It has been assumed that the change in rainfall intensity has different effects on bacterial transport as a function of soil depth. In this study, repacked and intact column systems were used to investigate the influences of pore water velocity on the transport of 652T7 through a loamy soil collected from varying soil depths.

View Article and Find Full Text PDF

Technologies enabling on-site environmental detection or medical diagnostics in resource-limited settings have a strong disruptive potential compared to current analytical approaches that require trained personnel in laboratories with immobile, resource intensive instrumentation. Handheld devices, such as smartphones, are now routinely produced with CPUs, RAM, wireless data transfer capabilities, and high-resolution complementary metal oxide semiconductor (CMOS) cameras capable of supporting the capture and processing of bioluminescent signals. In theory, combining the capabilities of these devices with continuously bioluminescent human cell-based bioreporters would allow them to replicate the functionality of more expensive, more complex, and less flexible platforms while supporting human-relevant conclusions.

View Article and Find Full Text PDF

Due to the public health concerns of endocrine-disrupting chemicals, there is an increasing demand to develop improved high-throughput detection assays for enhanced exposure control and risk assessment. A substrate-free, autobioluminescent HEK293 assay was developed to screen compounds for their ability to induce androgen receptor (AR)-mediated transcriptional activation. The assay was validated against a group of 40 recommended chemicals and achieved an overall 87.

View Article and Find Full Text PDF

Background: Luminescent reporter proteins are vital tools for visualizing cells and cellular activity. Among the current toolbox of bioluminescent systems, only bacterial luciferase has genetically defined luciferase and luciferin synthesis pathways that are functional at the mammalian cell temperature optimum of 37 °C and have the potential for in vivo applications. However, this system is not functional in all cell types, including stem cells, where the ability to monitor continuously and in real-time cellular processes such as differentiation and proliferation would be particularly advantageous.

View Article and Find Full Text PDF

In this study, we show the repetitive detection of toluene on a tapered optical fiber element (OFE) with an attached layer of TVA8 bioluminescent bioreporters. The bioluminescent cell layer was attached on polished quartz modified with (3-aminopropyl)triethoxysilane (APTES). The repeatability of the preparation of the optical probe and its use was demonstrated with five differently shaped OFEs.

View Article and Find Full Text PDF

Chemotaxis and haptotaxis are important biological mechanisms that influence microbial movement toward concentrated chemoattractants in mobile liquids and along immobile surfaces, respectively. This study investigated their coupled effect, as induced by naphthalene (10 mg L), on the transport and retention of two pollutant-degrading bacteria, 5RL (5RL) and DQ1 (DQ1), in quartz sand and natural soil. The results demonstrated that DQ1 was not chemotactic, whereas 5RL was chemotactic at 25°C but not at 4°C due to the restricted movement.

View Article and Find Full Text PDF

In vivo small animal bioluminescent imaging has become an indispensable technique for interrogating the localization, health, and functionality of implanted cells within the complex environment of a living organism. However, this task can be daunting for even the most experienced researchers because it requires multiple animal handling steps and produces differential output signal characteristics in response to a number of experimental design variables. The recent emergence of autobioluminescent cells, which autonomously and continuously produce bioluminescent output signals without external stimulation, has the potential to simplify this process, reduce variability by removing human-induced error, and improve animal welfare by reducing the number of required needlesticks per procedure.

View Article and Find Full Text PDF

Bioluminescent yeast assays BLYES and BLYAS are whole-cell bioassays that utilize genetically modified Saccharomyces cerevisiae bioreporters to detect estrogenic and androgenic activities, respectively. The bioreporter strains chromosomally express human estrogen receptor alpha (BLYES) or androgen receptor (BLYAS) and contain a reporter plasmid expressing the complete bacterial luciferase gene cassette (luxCDABE) under the control of an estrogen- or androgen-responsive promoter. Exposure to endocrine-disrupting compounds activates the receptor which subsequently turns on the expression of the reporter genes, resulting in dose-dependent bioluminescence (i.

View Article and Find Full Text PDF

A synthetic bacterial luciferase-based autobioluminescent bioreporter, HEK293ERE/Gal4-Lux, was developed in a human embryonic kidney (HEK293) cell line for the surveillance of chemicals displaying endocrine disrupting activity. Unlike alternative luminescent reporters, this bioreporter generates bioluminescence autonomously without requiring an external light-activating chemical substrate or cellular destruction. The bioreporter's performance was validated against a library of 76 agonistic and antagonistic estrogenic endocrine disruptor chemicals and demonstrated reproducible half maximal effective concentration (EC50) values meeting the U.

View Article and Find Full Text PDF

An autonomously bioluminescent Saccharomyces cerevisiae BLYAhS bioreporter was developed in this study for the simple and rapid detection of dioxin-like compounds (DLCs) and aryl hydrocarbon receptor (AhR) agonists. This recombinant yeast reporter was based on a synthetic bacterial luciferase reporter gene cassette (lux) that can produce the luciferase as well as the enzymes capable of self-synthesizing the requisite substrates for bioluminescent production from endogenous cellular metabolites. As a result, bioluminescent signal production is generated continuously and autonomously without cell lysis or exogenous reagent addition.

View Article and Find Full Text PDF

Modern drug discovery workflows require assay systems capable of replicating the complex interactions of multiple tissue types, but that can still function under high throughput conditions. In this work, we evaluate the use of substrate-free autobioluminescence in human cell lines to support the performance of these assays with reduced economical and logistical restrictions relative to substrate-requiring bioluminescent reporter systems. The use of autobioluminescence was found to support assay functionality similar to existing luciferase reporter targets.

View Article and Find Full Text PDF

In vivo bioluminescent imaging (BLI) permits the visualization of engineered bioluminescence from living cells and tissues to provide a unique perspective toward the understanding of biological processes as they occur within the framework of an authentic in vivo environment. The toolbox of in vivo BLI includes an inventory of luciferase compounds capable of generating bioluminescent light signals along with sophisticated and powerful instrumentation designed to detect and quantify these light signals non-invasively as they emit from the living subject. The information acquired reveals the dynamics of a wide range of biological functions that play key roles in the physiological and pathological control of disease and its therapeutic management.

View Article and Find Full Text PDF

Purpose: The study was to develop an auto-bioluminescent urinary bladder cancer (UBC) xenograft animal model for pre-clinical research.

Procedure: The study used a humanized, bacteria-originated lux reporter system consisting of six (luxCDABEfrp) genes to express components required for producing bioluminescent signals in human UBC J82, J82-Ras, and SW780 cells without exogenous substrates. Immune-deficient nude mice were inoculated with Lux-expressing UBC cells to develop auto-bioluminescent xenograft tumors that were monitored by imaging and physical examination.

View Article and Find Full Text PDF

Living cells of the -based bioluminescent bioreporter TVA8 were encapsulated in a silica hydrogel attached to the distal wider end of a tapered quartz fiber. Bioluminescence of immobilized cells was induced with toluene at high (26.5 mg/L) and low (5.

View Article and Find Full Text PDF

Escherichia coli O157:H7 is a significant human pathogen that is continually responsible for sickness, and even death, on a worldwide scale. While the pathology of E. coli O157:H7 infection has been well studied, the effect of it's multiple resulting cytotoxic mechanisms on host metabolic activity has not been well characterized.

View Article and Find Full Text PDF

The aim of this study was to evaluate the biological toxicity of cellulose nanocrystals (CNCs) using the constitutively bioluminescent luxCDABE-based bioreporter Escherichia coli 652T7. The effects of CNCs on E. c oli 652T7 biotoxicity were investigated at different CNC concentrations, reaction times, and IC50 values.

View Article and Find Full Text PDF

A luxCDABE-based genetically engineered bacterial bioreporter (Escherichia coli ARL1) was used to detect bioavailable ionic mercury (Hg(II)) and investigate the effects of humic acids and ethylenediaminetetraacetic acid (EDTA) on the bioavailability of mercury in E. c oli. Results showed that the E.

View Article and Find Full Text PDF

Natural and manmade organic chemicals are widely deposited across a diverse range of ecosystems including air, surface water, groundwater, wastewater, soil, sediment, and marine environments. Some organic compounds, despite their industrial values, are toxic to living organisms and pose significant health risks to humans and wildlife. Detection and monitoring of these organic pollutants in environmental matrices therefore is of great interest and need for remediation and health risk assessment.

View Article and Find Full Text PDF

Background: Expression of autonomous bioluminescence from human cells was previously reported to be impossible, suggesting that all bioluminescent-based mammalian reporter systems must therefore require application of a potentially influential chemical substrate. While this was disproven when the bacterial luciferase (lux) cassette was demonstrated to function in a human cell, its expression required multiple genetic constructs, was functional in only a single cell type, and generated a significantly reduced signal compared to substrate-requiring systems. Here we investigate the use of a humanized, viral 2A-linked lux genetic architecture for the efficient introduction of an autobioluminescent phenotype across a variety of human cell lines.

View Article and Find Full Text PDF

Mammalian cell-based in vitro assays have been widely employed as alternatives to animal testing for toxicological studies but have been limited due to the high monetary and time costs of parallel sample preparation that are necessitated due to the destructive nature of firefly luciferase-based screening methods. This video describes the utilization of autonomously bioluminescent mammalian cells, which do not require the destructive addition of a luciferin substrate, as an inexpensive and facile method for monitoring the cytotoxic effects of a compound of interest. Mammalian cells stably expressing the full bacterial bioluminescence (luxCDABEfrp) gene cassette autonomously produce an optical signal that peaks at 490 nm without the addition of an expensive and possibly interfering luciferin substrate, excitation by an external energy source, or destruction of the sample that is traditionally performed during optical imaging procedures.

View Article and Find Full Text PDF

Cellular population dynamics are routinely monitored across many diverse fields for a variety of purposes. In general, these dynamics are assayed either through the direct counting of cellular aliquots followed by extrapolation to the total population size, or through the monitoring of signal intensity from any number of externally stimulated reporter proteins. While both viable methods, here we describe a novel technique that allows for the automated, non-destructive tracking of cellular population dynamics in real-time.

View Article and Find Full Text PDF

The effects of C60 on mercury bioavailability and sorption were investigated at different C60 dosages, reaction times, and pH ranges using the merR::luxCDABE bioluminescent bioreporter Escherichia coli ARL1. The results demonstrated that the bioavailability of mercury (Hg(2+)) decreased with increasing C60 dosage. Approximately 30% of aqueous mercury became biologically unavailable 2h after interaction with C60 at a mass ratio of C60 to mercury as low as 0.

View Article and Find Full Text PDF

Bioluminescent imaging is an emerging biomedical surveillance strategy that uses external cameras to detect light generated in small animal models of human physiology or light generated in tissue culture or tissue scaffold mimics of human anatomy. The most widely utilized of reporters is the firefly luciferase () gene; however, it generates light only upon addition of a chemical substrate, thus only generating intermittent single time point data snapshots. To overcome this disadvantage, we have demonstrated substrate-independent bioluminescent imaging using an optimized bacterial bioluminescence () system.

View Article and Find Full Text PDF

Living whole-cell bioreporters serve as environmental biosentinels that survey their ecosystems for harmful pollutants and chemical toxicants, and in the process act as human and other higher animal proxies to pre-alert for unfavorable, damaging, or toxic conditions. Endowed with bioluminescent, fluorescent, or colorimetric signaling elements, bioreporters can provide a fast, easily measured link to chemical contaminant presence, bioavailability, and toxicity relative to a living system. Though well tested in the confines of the laboratory, real-world applications of bioreporters are limited.

View Article and Find Full Text PDF