Premature birth is a leading cause of childhood morbidity and mortality and often followed by an arrest of postnatal lung development called bronchopulmonary dysplasia. Therapies using exogenous mesenchymal stromal cells (MSC) have proven highly efficacious in term-born rodent models of this disease, but effects of MSC in actual premature-born lungs are largely unknown. Here, we investigated thirteen non-human primates (baboons; Papio spp.
View Article and Find Full Text PDFPreterm birth is the leading cause of death in children under 5 years of age. Premature infants who receive life-saving oxygen therapy often develop bronchopulmonary dysplasia (BPD), a chronic lung disease. Infants with BPD are at a high risk of abnormal neurodevelopment, including motor and cognitive difficulties.
View Article and Find Full Text PDFThe main respiratory pathophysiological process following premature birth is the delayed or arrested alveolar development that translates to a smaller alveolar surface area (S). Histological morphometry is the gold standard method to measure the S but requires invasive tissue sampling or the removal of the whole organ for analysis. Alternatively, the S could be measured in living subjects by "functional morphometry" using Fick's first law of diffusion and noninvasive measurements of the ventilation to perfusion ratio (V̇a/Q̇).
View Article and Find Full Text PDFResident/endogenous mesenchymal stromal cells function to promote the normal development, growth, and repair of tissues. Following premature birth, the effects of routine neonatal care (e.g.
View Article and Find Full Text PDFIntra-amniotic exposure to proinflammatory cytokines such as interleukin-1 (IL-1) correlates with a decreased incidence of respiratory distress syndrome (RDS) in infants following premature birth. At birth, inadequate absorption of fluid from the fetal lung contributes to the onset RDS. Lung fluid clearance is coupled to Na transport via epithelial sodium channels (ENaC).
View Article and Find Full Text PDFPremature baboons exhibit peripheral insulin resistance and impaired insulin signaling. 5' AMP-activated protein kinase (AMPK) activation improves insulin sensitivity by enhancing glucose uptake (via increased glucose transporter type 4 [GLUT4] translocation and activation of the extracellular signal-regulated kinase [ERK]/ atypical protein kinase C [aPKC] pathway), and increasing fatty acid oxidation (via inhibition of acetyl-CoA carboxylase 1 [ACC]), while downregulating gluconeogenesis (via induction of small heterodimer partner [SHP] and subsequent downregulation of the gluconeogenic enzymes: phosphoenolpyruvate carboxykinase [PEPCK], glucose 6-phosphatase [G6PASE], fructose- 1,6-bisphosphatase 1 [FBP1], and forkhead box protein 1 [FOXO1]). The purpose of this study was to investigate whether pharmacologic activation of AMPK with AICAR (5-aminoimidazole-4-carboximide riboside) administration improves peripheral insulin sensitivity in preterm baboons.
View Article and Find Full Text PDFPremature infants develop hyperglycemia shortly after birth, increasing their morbidity and death. Surviving infants have increased incidence of diabetes as young adults. Our understanding of the biological basis for the insulin resistance of prematurity and developmental regulation of glucose production remains fragmentary.
View Article and Find Full Text PDFABSTRACT During fetal development physiological stretching helps drive lung growth and maturation. At birth, the α-subunit of the alveolar epithelial sodium channel (α-ENaC) is a critical factor in helping to facilitate clearance of lung fluid during the perinatal period. The effects of stretch, however, on α-ENaC expression in the fetal lung have yet to be elucidated.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
January 2013
Preterm infants may be at risk of necrotizing enterocolitis (NEC) due to deficiency of transforming growth factor-β 2 (TGF-β(2)) in the developing intestine. We hypothesized that low epithelial TGF-β(2) expression in preterm intestine and during NEC results from diminished autocrine induction of TGF-β(2) in these cells. Premature baboons delivered at 67% gestation were treated per current norms for human preterm infants.
View Article and Find Full Text PDFRespiratory dysfunction in adults has been correlated with neonatal Chlamydia trachomatis pneumonia in several studies, but a causal association has not been clearly demonstrated. In this study, we examined radial alveolar counts (RACs) by microscopy, and airway and parenchymal lung function using a small animal ventilator in juvenile (5 weeks age) and adult (8 weeks age) BALB/c mice challenged as neonates with Chlamydia muridarum (C. mur) on day 1 or day 7 after birth, representing saccular (human pre-term neonates) and alveolar (human term neonates) stages of lung development, respectively.
View Article and Find Full Text PDFAlpha-ENaC expression and activity is regulated by a variety of hormones including beta-adrenergic agonists via the second messenger cAMP. We evaluated the early intermediate pathways involved in the up-regulation of SGK1 by DbcAMP and whether SGK1 is a prerequisite for induction of alpha-ENaC expression. Submandibular gland epithelial (SMG-C6) cells treated with DbcAMP (1 mM) induced both SGK1 mRNA and protein expression.
View Article and Find Full Text PDFA major mechanism for Na+ transport across epithelia occurs through epithelial Na+ channels (ENaC). ENaC is a multimeric channel consisting of three subunits (alpha, beta, and gamma). The alpha-subunit is critical for ENaC function.
View Article and Find Full Text PDFSurfactant-associated proteins (SP-A, SP-B, and SP-C) are critical for the endogenous function of surfactant. Keratinocyte growth factor (KGF) and vascular endothelial growth factor (VEGF) are key regulators of lung development. The objective of this study was to evaluate the effects of early mechanical ventilation on the expression of these important regulatory proteins in a preterm rabbit model.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
February 2006
After birth, constriction of the full-term ductus arteriosus induces oxygen, glucose and ATP depletion, cell death, and anatomic remodeling of the ductus wall. The immature ductus frequently fails to develop the same degree of constriction or anatomic remodeling after birth. In addition, the immature ductus loses its ability to respond to vasoconstrictive agents, like oxygen or indomethacin, with increasing postnatal age.
View Article and Find Full Text PDFObjective: Renal and cardiovascular function is improved during the first 24 hours of life in preterm ventilated baboons exposed to prenatal betamethasone (BETA). We hypothesized BETA-induced effects would be sustained through day 6 of life. Study design Pregnant baboons received saline or BETA (6 mg) 48 and 24 hours before preterm delivery at 125 days' gestation.
View Article and Find Full Text PDFBackground: In the preterm newborn, a patent ductus arteriosus is in large part a result of the increased sensitivity of the immature ductus to prostaglandin E2 (PGE2). PGE2 acts through 3 G protein-coupled receptors (EP2, EP3, and EP4) that activate both adenyl cyclase and K(ATP) channels. We explored these pathways to identify the mechanisms responsible for the increased sensitivity of the immature ductus to PGE2.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
January 2004
At birth, lung fluid clearance is coupled to Na+ transport through epithelial Na+ channels (ENaC) in the distal lung epithelium. We evaluated the effect of postnatal glucocorticoids (GC) on lung alpha-ENaC expression in preterm 29-day gestational age (GA) fetal rabbits. Postnatal treatment of 29-day GA fetuses with 0.
View Article and Find Full Text PDFCortisol and thyroid hormones are critical to normal fetal development and neonatal transition, and baseline values and stimulation tests are abnormal after preterm birth. To evaluate cortisol and thyroxine (T4) responses that are not influenced by uncontrolled antenatal events associated with human preterm labor, we measured cortisol and T4 after standard-dose adrenocorticotropin (ACTH) and corticotropin-releasing hormone (CRH) stimulation tests, as well as high-dose CRH and thyrotropin-releasing hormone stimulation tests in baboons that were delivered for 3 separate protocols at 125 days of gestation (term is 186 days). The animals were surfactant treated and ventilated for up to 14 days.
View Article and Find Full Text PDFBecause minimal information is available about surfactant metabolism in bronchopulmonary dysplasia, we measured half-lives and pool sizes of surfactant phosphatidylcholine in very preterm baboons recovering from respiratory distress syndrome and developing bronchopulmonary dysplasia, using stable isotopes, radioactive isotopes, and direct pool size measurements. Eight ventilated premature baboons received (2)H-DPPC (dipalmitoyl phosphatidylcholine) on d 5 of life, and radioactive (14)C-DPPC with a treatment dose of surfactant on d 8. After 14 d, lung pool sizes of saturated phosphatidylcholine were measured.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
January 2002
Anatomic remodeling and permanent closure of the newborn ductus arteriosus appears to require the development of intense hypoxia within the constricted vessel wall. Hypoxic ductus smooth muscle cells express vascular endothelial cell growth factor (VEGF). We studied premature baboons and sheep to determine the effects of VEGF inhibition (in baboons) and VEGF stimulation (in sheep) on ductus remodeling in vivo.
View Article and Find Full Text PDF