Compared with urban-industrial populations, small-scale human communities worldwide share a significant number of gut microbiome traits with nonhuman primates. This overlap is thought to be driven by analogous dietary triggers; however, the ecological and functional bases of this similarity are not fully understood. To start addressing this issue, fecal metagenomes of BaAka hunter-gatherers and traditional Bantu agriculturalists from the Central African Republic were profiled and compared with those of a sympatric western lowland gorilla group ( ) across two seasons of variable dietary intake.
View Article and Find Full Text PDFBackground: Comparative data from non-human primates provide insight into the processes that shaped the evolution of the human gut microbiome and highlight microbiome traits that differentiate humans from other primates. Here, in an effort to improve our understanding of the human microbiome, we compare gut microbiome composition and functional potential in 14 populations of humans from ten nations and 18 species of wild, non-human primates.
Results: Contrary to expectations from host phylogenetics, we find that human gut microbiome composition and functional potential are more similar to those of cercopithecines, a subfamily of Old World monkey, particularly baboons, than to those of African apes.
The study of the primate microbiome is critical in understanding the role of the microbial community in the host organism. To be able to isolate the main factors responsible for the differences observed in microbiomes within and between individuals, confounding factors due to technical variations need to be removed. To determine whether alterations due to preservatives outweigh differences due to factors such as host population, host species, body site, and habitat, we tested three methods (no preservative, 96% ethanol, and RNAlater) for preserving wild chimpanzee (fecal), wild lemur (fecal), wild vervet monkey (rectal, oral, nasal, otic, vaginal, and penile), and captive vervet monkey (rectal) samples.
View Article and Find Full Text PDFThe gut microbiome of primates, including humans, is reported to closely follow host evolutionary history, with gut microbiome composition being specific to the genetic background of its primate host. However, the comparative models used to date have mainly included a limited set of closely related primates. To further understand the forces that shape the primate gut microbiome, with reference to human populations, we expanded the comparative analysis of variation among gut microbiome compositions and their primate hosts, including 9 different primate species and 4 human groups characterized by a diverse set of subsistence patterns ( = 448 samples).
View Article and Find Full Text PDFMicrobiomes are vast communities of microorganisms and viruses that populate all natural ecosystems. Viruses have been considered to be the most variable component of microbiomes, as supported by virome surveys and examples of high genomic mosaicism. However, recent evidence suggests that the human gut virome is remarkably stable compared with that of other environments.
View Article and Find Full Text PDFBackground: Limited accessibility to intestinal epithelial tissue in wild animals and humans makes it challenging to study patterns of intestinal gene regulation, and hence to monitor physiological status and health in field conditions. To explore solutions to this limitation, we have used a noninvasive approach via fecal RNA-seq, for the quantification of gene expression markers in gastrointestinal cells of free-range primates and a forager human population. Thus, a combination of poly(A) mRNA enrichment and rRNA depletion methods was used in tandem with RNA-seq to quantify and compare gastrointestinal gene expression patterns in fecal samples of wild Gorilla gorilla gorilla (n = 9) and BaAka hunter-gatherers (n = 10) from The Dzanga Sangha Protected Areas, Central African Republic.
View Article and Find Full Text PDFOver the past decade several studies have reported that the gut microbiomes of mammals with similar dietary niches exhibit similar compositional and functional traits. However, these studies rely heavily on samples from captive individuals and often confound host phylogeny, gut morphology, and diet. To more explicitly test the influence of host dietary niche on the mammalian gut microbiome we use 16S rRNA gene amplicon sequencing and shotgun metagenomics to compare the gut microbiota of 18 species of wild non-human primates classified as either folivores or closely related non-folivores, evenly distributed throughout the primate order and representing a range of gut morphological specializations.
View Article and Find Full Text PDFRelationships between gastrointestinal parasites (GIPs) and the gastrointestinal microbiome (GIM) are widely discussed topics across mammalian species due to their possible impact on the host's health. GIPs may change the environment determining alterations in GIM composition. We evaluated the associations between GIP infections and fecal microbiome composition in two habituated and two unhabituated groups of wild western lowland gorillas () from Dzanga Sangha Protected Areas, Central African Republic.
View Article and Find Full Text PDFExposure to stressors can negatively impact the mammalian gastrointestinal microbiome (GIM). Here, we used 454 pyrosequencing of 16S rRNA bacterial gene amplicons to evaluate the impact of physiological stress, as evidenced by faecal glucocorticoid metabolites (FGCM; ng/g), on the GIM composition of free-ranging western lowland gorillas (Gorilla gorilla gorilla). Although we found no relationship between GIM alpha diversity (H) and FGCM levels, we observed a significant relationship between the relative abundances of particular bacterial taxa and FGCM levels.
View Article and Find Full Text PDFStudies of human and domestic animal models indicate that related individuals and those that spend the most time in physical contact typically have more similar gut microbial communities. However, few studies have examined these factors in wild mammals where complex social dynamics and a variety of interacting environmental factors may impact the patterns observed in controlled systems. Here, we explore the effect of host kinship and time spent in social contact on the gut microbiota of wild, black howler monkeys (Alouatta pigra).
View Article and Find Full Text PDFThe mammalian gastrointestinal (GI) microbiome, which plays indispensable roles in host nutrition and health, is affected by numerous intrinsic and extrinsic factors. Among them, antibiotic (ATB) treatment is reported to have a significant effect on GI microbiome composition in humans and other animals. However, the impact of ATBs on the GI microbiome of free-ranging or even captive great apes remains poorly characterized.
View Article and Find Full Text PDFThe gut microbiota contributes to host health by maintaining homeostasis, increasing digestive efficiency, and facilitating the development of the immune system. The composition of the gut microbiota can change dramatically within and between individuals of a species as a result of diet, age, or habitat. Therefore, understanding the factors determining gut microbiota diversity and composition can contribute to our knowledge of host ecology as well as to conservation efforts.
View Article and Find Full Text PDFSeveral primates show sex-based differences in activity patterns and social interactions during infancy. These differences have been associated with adult social and reproductive functions of males and females and are related to male-male competition. Our goal was to describe behavioral patterns of wild Alouatta caraya male and female infants, a species with sexual dimorphism in body size and behavioral strategies during adulthood.
View Article and Find Full Text PDFTo understand how the gut microbiome is impacted by human adaptation to varying environments, we explored gut bacterial communities in the BaAka rainforest hunter-gatherers and their agriculturalist Bantu neighbors in the Central African Republic. Although the microbiome of both groups is compositionally similar, hunter-gatherers harbor increased abundance of Prevotellaceae, Treponema, and Clostridiaceae, while the Bantu gut microbiome is dominated by Firmicutes. Comparisons with US Americans reveal microbiome differences between Africans and westerners but show western-like features in the Bantu, including an increased abundance of predictive carbohydrate and xenobiotic metabolic pathways.
View Article and Find Full Text PDFRecent studies suggest that variation in diet across time and space results in changes in the mammalian gut microbiota. This variation may ultimately impact host ecology by altering nutritional status and health. Wild animal populations provide an excellent opportunity for understanding these interactions.
View Article and Find Full Text PDFBackground: The human gut microbiota interacts closely with human diet and physiology. To better understand the mechanisms behind this relationship, gut microbiome research relies on complementing human studies with manipulations of animal models, including non-human primates. However, due to unique aspects of human diet and physiology, it is likely that host-gut microbe interactions operate differently in humans and non-human primates.
View Article and Find Full Text PDFAlthough the critical role that our gastrointestinal microbes play in host physiology is now well established, we know little about the factors that influenced the evolution of primate gut microbiomes. To further understand current gut microbiome configurations and diet-microbe co-metabolic fingerprints in primates, from an evolutionary perspective, we characterized fecal bacterial communities and metabolomic profiles in 228 fecal samples of lowland and mountain gorillas (G. g.
View Article and Find Full Text PDFThe metabolic activities of gut microbes significantly influence host physiology; thus, characterizing the forces that modulate this micro-ecosystem is key to understanding mammalian biology and fitness. To investigate the gut microbiome of wild primates and determine how these microbial communities respond to the host's external environment, we characterized faecal bacterial communities and, for the first time, gut metabolomes of four wild lowland gorilla groups in the Dzanga-Sangha Protected Areas, Central African Republic. Results show that geographical range may be an important modulator of the gut microbiomes and metabolomes of these gorilla groups.
View Article and Find Full Text PDFFor most mammals, including nonhuman primates, diet composition varies temporally in response to differences in food availability. Because diet influences gut microbiota composition, it is likely that the gut microbiota of wild mammals varies in response to seasonal changes in feeding patterns. Such variation may affect host digestive efficiency and, ultimately, host nutrition.
View Article and Find Full Text PDFIn all mammals, growth, development, pregnancy, and lactation increase nutritional demands. Although primate field studies tend to focus on shifts in activity and diet as mechanisms to compensate for these demands, differences in digestive efficiency also are likely to be important. Because the gut microbiota can impact host digestive efficiency, we examined differences in activity budget, diet, and the gut microbial community among adult male (N = 4), adult female (N = 4), and juvenile (N = 5) wild black howler monkeys (Alouatta pigra) across a ten-month period in Palenque National Park, Mexico to determine how adult females and juveniles compensate for increased nutritional demands.
View Article and Find Full Text PDFBacterial communities colonizing the reproductive tracts of primates (including humans) impact the health, survival and fitness of the host, and thereby the evolution of the host species. Despite their importance, we currently have a poor understanding of primate microbiomes. The composition and structure of microbial communities vary considerably depending on the host and environmental factors.
View Article and Find Full Text PDF