NPJ Breast Cancer
September 2021
Knocking down delta-5-desaturase (D5D) by siRNA or shRNA is a promising strategy to achieve 8-hydroxyoctanoic acid (8-HOA) production for cancer inhibition. However, the RNAi-based strategy to stimulate 8-HOA is restricted due to endonucleases mediated physiological degradation and off-target effects. Thus, to get persistent 8-HOA in the cancer cell, we recognized a D5D inhibitor Iminodibenzyl.
View Article and Find Full Text PDFDelta-5 desaturase (D5D) is a rate-limiting enzyme that introduces double-bonds to the delta-5 position of the n-3 and n-6 polyunsaturated fatty acid chain. Since fatty acid metabolism is a vital factor in cancer development, several recent studies have revealed that D5D activity and expression could be an independent prognostic factor in cancers. However, the mechanistic basis of D5D in cancer progression is still controversial.
View Article and Find Full Text PDFCyclooxygenase-2 (COX-2) is up-regulated by redox imbalance and is considered a target for cancer therapy. The rationale of the COX-2 inhibitor lies in suppressing COX-2 catalyzed peroxidation of omega-6 polyunsaturated fatty acids (PUFAs), which are essential and pervasive in our daily diet. However, COX-2 inhibitors fail to improve cancer patients' survival and may lead to severe side effects.
View Article and Find Full Text PDFKnocking down delta-5-desaturase (D5D) expression by D5D small interfering RNA (siRNA) has been reported that could redirect the cyclooxygenase-2 (COX-2)-catalyzed dihomo-γ-linolenic acid (DGLA) peroxidation from producing prostaglandin E2 to 8-hydroxyoctanoic acid (8-HOA), resulting in the inhibition of colon and pancreatic cancers. However, the effect of D5D siRNA on lung cancer is still unknown. In this study, by incorporating epithelial cell adhesion molecule (EpCAM) aptamer and validated D5D siRNA into the innovative three-way junction (3WJ) RNA nanoparticle, target-specific accumulation and D5D knockdown were achieved in the lung cancer cell and mouse models.
View Article and Find Full Text PDFThree mononuclear or dinuclear bis(terpyridine) (tpy) iridium(III) complexes bearing pyren-1-yl (pyr) group(s) were synthesized. Their photophysical properties in water and in vitro photodynamic therapy (PDT) effects toward the human lung epithelial cancer cell line A549 and the human epidermal skin cancer cell line A431 were investigated to evaluate the effects of dinuclear versus mononuclear complexes and the impact of the oligoether substituent at the ligand. All complexes possessed pyr-tpy ligand-associated charge transfer (CT)/ππ* absorption bands at 350-550 nm, with the dinuclear complex showing the much enhanced absorptivity of this band.
View Article and Find Full Text PDF8-Hydroxyoctanoic acid (8-HOA) produced through cyclooxygenase-2 (COX-2) catalyzed dihomo-γ-linolenic acid (DGLA) peroxidation in delta-5-desaturase inhibitory (D5D siRNA) condition showed an inhibitory effect on breast cancer cell proliferation and migration. However, in vivo use of naked D5D siRNA was limited by off-target silencing and degradation by endonucleases. To overcome the limitation and deliver the D5D siRNA in vivo, we designed an epithelia cell adhesion molecule targeted three-way junctional nanoparticle having D5D siRNA.
View Article and Find Full Text PDFProstaglandin endoperoxide H synthase (PGHS) is a heme-enzyme responsible for the conversion of arachidonic acid (AA) to prostaglandin H (PGH). PGHS have both oxygenase (COX) and peroxidase (POX) activities and is present in two isoforms (PGHS-1 and -2) expressed in different tissues and cell conditions. It has been reported that PGHS activity is inhibited by the nitrated form of AA, nitro-arachidonic acid (NOAA), which in turn could be synthesized by PGHS under nitro-oxidative conditions.
View Article and Find Full Text PDFThe thunder god vine (Tripterygium wilfordii Hook. F) is traditionally used for inflammation-related diseases in traditional Chinese medicine. In recent years, celastrol (a natural compound from the root of the thunder god vine) has attracted great interest for its potential anticancer activities.
View Article and Find Full Text PDFBackground: It has been widely accepted that angiogenesis plays fundamental roles in colorectal cancer development, and therapeutic targeting of this pathway has achieved promising outcome. Recent reports have highlighted the involvement of nitric oxide synthases (NOS) in the development of angiogenesis in cancer; however, the mechanism and therapeutic value of NOS inhibitors in colon cancer are largely unknown.
Objective: In this study, we investigated the effects and mechanism of the NOS inhibitors 1400W and L-NIO on the angiogenesis pathway in colorectal cancer cells.
We have previously demonstrated that DGLA treatment along with Delta-5-Desaturase (D5D) siRNA in various types of cancer cells enhances the formation of 8-HOA from COX-2-catalyzed DGLA peroxidation, which in turn inhibits cancer cell growth and migration. However, delivery of naked siRNA remains a formidable challenge due to its "off-target" effect. In this study, we employed RNA nanotechnology for specific delivery of D5D-siRNA to xenograft colon tumors using 3WJ RNA nanoparticles.
View Article and Find Full Text PDFBackground: We previously demonstrated that knockdown of delta-5-desaturase via siRNA transfection together with dihomo-γ-linolenic acid supplementation inhibited colon cancer cell growth and migration, by promoting the production of the anti-cancer byproduct 8-hydroxyoctanoic acid from Cyclooxygenase-2-catalyzed dihomo-γ-linolenic acid peroxidation. Here, we extend our study to investigate the effects of delta-5-desaturase-knockdown and the resulting intensified dihomo-γ-linolenic acid peroxidation in xenograft tumor mice model.
Methods: Four-week old nude mice bearing the human colon cancer cell HCA-7/C29 vs.
We recently reported that siRNA-knockdown of delta-5-desaturase (D5D), the rate-limiting enzyme converting upstream ω - 6 dihomo-γ-linolenic acid (DGLA) to arachidonic acid, promoted formation of the anti-cancer byproduct 8-hydroxyoctanoic acid (8-HOA) from COX-2-catalyzed DGLA peroxidation, consequently suppressing pancreatic cancer cell growth, migration and invasion. In this study, we have further investigated the anti-tumor effects of D5D-knockdown and the resulting intensified COX-2-catalyzed DGLA peroxidation in subcutaneous xenograft tumors. Four-week old female nude mice (Jackson Laboratory, J:Nu-007850) were injected with human pancreatic cancer cell line BxPC-3 or its D5D knockdown counterpart (via shRNA), followed by 4-week treatments of: vehicle control, DGLA supplementation (8 mg/mouse, twice a week), gemcitabine (30 mg/kg, twice a week), and a combination of DGLA and gemcitabine.
View Article and Find Full Text PDFBackground: Cyclooxygenase-2 (COX-2), the inducible COX form, is a bi-functional membrane-bound enzyme that typically metabolizes arachidonic acid (downstream ω-6 fatty acid) to form 2-series of prostaglandins known to be involved in cancer development. Overexpression of COX-2 has been found in a majority of breast carcinomas, and has also been associated with increased severity and the development of the metastasis. Our lab recently demonstrated that COX-2 can also metabolize dihomo-γ-linolenic acid (DGLA, a precursor of ω-6 arachidonic acid) to produce an anti-cancer byproduct, 8-hydroxyoctanoic acid (8-HOA) that can inhibit growth and migration of colon and pancreatic cancer cells.
View Article and Find Full Text PDFBlood-based protein biomarkers have recently shown as simpler diagnostic modalities for colorectal cancer, while their association with clinical pathological characteristics is largely unknown. In this study, we not only examined the sensitivity and reliability of single/multiple serum markers for diagnosis, but also assessed their connection with pathological parameters from a total of 279 colorectal cancer patients. Our study shown that glycoprotein carcinoembryonic antigen (CEA) owns the highest sensitivity among single marker in the order of CEA > cancer antigen 72-4 (CA72-4) > cancer antigen 19-9 9 (CA19-9) > ferritin > cancer antigen 125 (CA125), while the most sensitive combined-markers for two to five were: CEA + CA72-4; CEA + CA72-4 + CA125; CEA + CA19-9 + CA72-4 + CA125; and CEA + CA19-9 + CA72-4 + CA125 + ferritin, respectively.
View Article and Find Full Text PDFAdv Exp Med Biol
April 2018
Redox signaling plays important roles in regulating pulmonary vasculature function. Aberrant redox signaling, e.g.
View Article and Find Full Text PDFNatural products, such as rosmarinic acid and apigenin, can act as xanthine oxidase inhibitors (XOIs) as well as superoxide anion scavengers, and have potential for treatment of diseases associated with high uric acid levels and oxidative stress. However, efficient simultaneous screening of these two bioactivities in natural products has been challenging. We have developed a novel method by assembling a multi-hyphenated high performance liquid chromatography (HPLC) system that combines a photo-diode array, chemiluminescence detector and a HPLC system with a variable wavelength detector, to simultaneously detect components that act as both XOIs and superoxide anion scavengers in natural products.
View Article and Find Full Text PDFUVA (315-400 nm) is the most abundant form of UV radiation in sunlight and indoor tanning beds. However, much remains to be understood about the regulation of the UVA damage response in melanocytes and melanoma. Here, we show that UVA, but not the shorter waveband UVB (280-315 nm), up-regulates adaptor protein p62 in an Nrf2- and reactive oxygen species (ROS)-dependent manner, suggesting a UVA-specific effect on p62 regulation.
View Article and Find Full Text PDFSilica nanoparticles (SiNPs) are important nano-sized, solid-state carriers/hosts to load, store, and deliver biological or pharmaceutical cargoes. They are also good potential solid supports to immobilize proteins for fundamental protein structure and dynamics studies. However, precaution is necessary when using SiNPs in these areas because adsorption might alter the activity of the cargoes, especially when enzymes are loaded.
View Article and Find Full Text PDFWe recently reported that knockdown of delta-5-desaturase (a key enzyme that converts dihomo-γ-linolenic acid, DGLA, to the downstream ω-6 arachidonic acid) promotes formation of an anti-cancer byproduct 8-hydroxyoctanoic acid from cyclooxygenase (COX)-catalyzed DGLA peroxidation. 8-hydroxyoctanoic acid can exert its growth inhibitory effect on cancer cells (e.g.
View Article and Find Full Text PDFBackground: Epidemiological data suggest that omega-6 (ω-6) fatty acids (FAs) may be associated with cancer incidence and/or cancer mortality, whereas ω-3 FAs are potentially protective. We examined the association of the ratio of ω-6 to ω-3 FA (ω-6:ω-3) and individual FA components with pathological results among men with prostate cancer (PCa) undergoing radical prostatectomy.
Methods: Sixty-nine men were included in the study.
Cytochrome P450 enzyme CYP3A4 is an important drug-metabolizing enzyme, and high levels of tumoral expression of CYP3A4 are linked to drug resistance. We investigated the function of vitamin D-regulated miR-627 in intratumoral CYP3A4 suppression and its role in enhancing the efficacy of chemotherapy. We found that miR-627 targets CYP3A4 and suppresses CYP3A4 expression in colon cancer cell lines.
View Article and Find Full Text PDFRecent research has demonstrated that colon cancer cell proliferation can be suppressed in the cells that overexpress COX-2 via generating 8-hydroxyoctanoic acid (a free radical byproduct) during dihomo-γ-linolenic acid (DGLA, an ω-6 fatty acid) peroxidation from knocking down cellular delta-5-desaturase (D5D, the key enzyme for converting DGLA to the downstream ω-6, arachidonic acid). Here, this novel research finding is extended to pancreatic cancer growth, as COX-2 is also commonly overexpressed in pancreatic cancer. The pancreatic cancer cell line, BxPC-3 (with high COX-2 expression and mutated p53), was used to assess not only the inhibitory effects of the enhanced formation of 8-hydroxyoctanoic acid from cellular COX-2-catalyzed DGLA peroxidation but also its potential synergistic and/or additive effect on current chemotherapy drugs.
View Article and Find Full Text PDFCyclooxygenase (COX), commonly overexpressed in cancer cells, is a major lipid peroxidizing enzyme that metabolizes polyunsaturated fatty acids (ω-3s and ω-6s). The COX-catalyzed free radical peroxidation of arachidonic acid (ω-6) can produce deleterious metabolites (e.g.
View Article and Find Full Text PDFConsidering the systemic toxicity of chemotherapeutic agents, there is an urgent need to develop new targeted drug delivery systems. Herein, we have developed a new nuclear targeted, redox sensitive, drug delivery vehicle to simultaneously deliver the anticancer drugs gemcitabine and doxorubicin to the nuclei of pancreatic cancer cells. We prepared polymeric bilayer vesicles (polymersomes), and actively encapsulated the drug combination by the pH gradient method.
View Article and Find Full Text PDF