Publications by authors named "Steven Phelps"

Acoustic displays are conspicuous behaviors common across diverse animal taxa. They have long been studied in behavioral ecology, evolutionary biology, and neuroscience. Most of these investigations, however, have focused on male display.

View Article and Find Full Text PDF

Sexual bonds are central to the social lives of many species, including humans, and monogamous prairie voles have become the predominant model for investigating such attachments. We developed an automated whole-brain mapping pipeline to identify brain circuits underlying pair-bonding behavior. We identified bonding-related c-Fos induction in 68 brain regions clustered in seven major brain-wide neuronal circuits.

View Article and Find Full Text PDF

Vocal display behaviours are common throughout the animal kingdom, play important roles in both courtship and aggression, and are frequent subjects of behavioural research. Although females of many species vocalize, an overwhelming fraction of behavioural research has focused on male display. We investigated vocal display behaviours in female singing mice (), small muroid rodents in which both sexes produce songs consisting of trills of rapid, downward frequency sweeps.

View Article and Find Full Text PDF

Background: Developing genomic resources for a diverse range of species is an important step towards understanding the mechanisms underlying complex traits. Specifically, organisms that exhibit unique and accessible phenotypes-of-interest allow researchers to address questions that may be ill-suited to traditional model organisms. We sequenced the genome and transcriptome of Alston's singing mouse (Scotinomys teguina), an emerging model for social cognition and vocal communication.

View Article and Find Full Text PDF

Sexual bonds are central to the social lives of many species, including humans, and monogamous prairie voles have become the predominant model for investigating such attachments. We developed an automated whole-brain mapping pipeline to identify brain circuits underlying pair-bonding behavior. We identified bonding-related c-Fos induction in 68 brain regions clustered in seven major brain-wide neuronal circuits.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines the complex vocalizations of Alston's singing mouse, focusing on how its vocal patterns are controlled by specific neural circuits governing muscle movements.
  • The researchers used a viral tracer to investigate and map the brain regions involved in these vocal behaviors, revealing key areas like the gigantocellular reticular formation and parts of the midbrain and forebrain.
  • The findings suggest that the observed vocal control circuitry in the singing mouse shares similarities with broader patterns seen in vertebrates and is aligned with existing models of vocal control in primates.
View Article and Find Full Text PDF

Social behavior varies across both individuals and species. Research to explain this variation falls under the purview of multiple disciplines, each with its own theoretical and empirical traditions. Integration of these disciplinary traditions is key to developing a holistic perspective.

View Article and Find Full Text PDF

Background: The coronavirus disease 2019 (COVID-19) pandemic has led to a surge in clinical trials evaluating investigational and approved drugs. Retrospective analysis of drugs taken by COVID-19 inpatients provides key information on drugs associated with better or worse outcomes.

Methods: We conducted a retrospective cohort study of 10 741 patients testing positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection within 3 days of admission to compare risk of 30-day all-cause mortality in patients receiving ondansetron using multivariate Cox proportional hazard models.

View Article and Find Full Text PDF

Background: Pair bonding with a reproductive partner is rare among mammals but is an important feature of human social behavior. Decades of research on monogamous prairie voles (Microtus ochrogaster), along with comparative studies using the related non-bonding meadow vole (M. pennsylvanicus), have revealed many of the neural and molecular mechanisms necessary for pair-bond formation in that species.

View Article and Find Full Text PDF

Because of their roles in courtship and intrasexual competition, sexual displays are often sexually dimorphic, but we know little about the mechanisms that produce such dimorphism. Among mammals, one example is the vocalization of Alston's singing mouse (Scotinomys teguina), which consists of a series of rapidly repeated, frequency-modulated notes. The rate and duration of songs is sexually dimorphic and androgen responsive.

View Article and Find Full Text PDF

Sexual displays are some of the most dramatic and varied behaviors that have been documented. The elaboration of such behaviors often relies on the modification of existing morphology. To understand how display elaboration arises, we analyzed the laryngeal anatomy of three species of mice that vary in the presence and complexity of their vocal displays.

View Article and Find Full Text PDF

Background: With the limited availability of testing for the presence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus and concerns surrounding the accuracy of existing methods, other means of identifying patients are urgently needed. Previous studies showing a correlation between certain laboratory tests and diagnosis suggest an alternative method based on an ensemble of tests.

Methods: We have trained a machine learning model to analyze the correlation between SARS-CoV-2 test results and 20 routine laboratory tests collected within a 2-day period around the SARS-CoV-2 test date.

View Article and Find Full Text PDF

Like many adaptive behaviors, acoustic communication often requires rapid modification of motor output in response to sensory cues. However, little is known about the sensorimotor transformations that underlie such complex natural behaviors. In this study, we examine vocal exchanges in Alston's singing mouse ().

View Article and Find Full Text PDF

Social monogamy, typically characterized by the formation of a pair bond, increased territorial defense, and often biparental care, has independently evolved multiple times in animals. Despite the independent evolutionary origins of monogamous mating systems, several homologous brain regions and neuropeptides and their receptors have been shown to play a conserved role in regulating social affiliation and parental care, but little is known about the neuromolecular mechanisms underlying monogamy on a genomic scale. Here, we compare neural transcriptomes of reproductive males in monogamous and nonmonogamous species pairs of mice, voles, parid songbirds, dendrobatid frogs, and species of cichlid fishes.

View Article and Find Full Text PDF

Advertisement displays often seem extravagant and expensive, and are thought to depend on the body condition of a signaller. Nevertheless, we know little about how signallers adjust effort based on condition, and few studies find a strong relationship between natural variation in condition and display. To examine the relationship between body condition and signal elaboration more fully, we characterized physiological condition and acoustic displays in a wild rodent with elaborate vocalizations, Alston's singing mouse, We found two major axes of variation in condition-one defined by short-term fluctuations in caloric nutrients, and a second by longer-term variation in adiposity.

View Article and Find Full Text PDF

Behaviour is a key interface between an animal's genome and its environment. Repeatable individual differences in behaviour have been extensively documented in animals, but the molecular underpinnings of behavioural variation among individuals within natural populations remain largely unknown. Here, we offer a critical review of when molecular techniques may yield new insights, and we provide specific guidance on how and whether the latest tools available are appropriate given different resources, system and organismal constraints, and experimental designs.

View Article and Find Full Text PDF

Adaptive variation in social behaviour depends upon standing genetic variation, but we know little about how evolutionary forces shape genetic diversity relevant to brain and behaviour. In prairie voles (Microtus ochrogaster), variants at the Avpr1a locus predict expression of the vasopressin 1a receptor in the retrosplenial cortex (RSC), a brain region that mediates spatial and contextual memory; cortical V1aR abundance in turn predicts diversity in space use and sexual fidelity in the field. To examine the potential contributions of adaptive and neutral forces to variation at the Avpr1a locus, we explore sequence diversity at the Avpr1a locus and throughout the genome in two populations of wild prairie voles.

View Article and Find Full Text PDF

Social behavior is among the most complex and variable of traits. Despite its diversity, we know little about how genetic and developmental factors interact to shape natural variation in social behavior. This review surveys recent work on individual differences in the expression of the vasopressin 1a receptor (V1aR), a major regulator of social behavior, in the neocortex of the socially monogamous prairie vole.

View Article and Find Full Text PDF

Corticosterone (CORT) is a stress-related steroid hormone found in vertebrates, and is known to interact with behavior. In the socially monogamous prairie vole (Microtus ochrogaster), acute stress and specifically acute CORT administration have been shown to facilitate male social preference for a familiar female, and this effect has been described as facilitation of the monogamous pair bond. It is possible, however, that the effects of stress on social preference may initially represent a short-term coping strategy.

View Article and Find Full Text PDF

Interspecific aggression between sibling species may enhance discrimination of competitors when recognition errors are costly, but proximate mechanisms mediating increased discriminative ability are unclear. We studied behavioral and neural mechanisms underlying responses to conspecific and heterospecific vocalizations in Alston's singing mouse (Scotinomys teguina), a species in which males sing to repel rivals. We performed playback experiments using males in allopatry and sympatry with a dominant heterospecific (Scotinomys xerampelinus) and examined song-evoked induction of egr-1 in the auditory system to examine how neural tuning modulates species-specific responses.

View Article and Find Full Text PDF