Publications by authors named "Steven P Kleopoulos"

The complex roles of myeloid cells, including microglia and perivascular macrophages, are central to the neurobiology of Alzheimer's disease (AD), yet they remain incompletely understood. Here, we profiled 832,505 human myeloid cells from the prefrontal cortex of 1,607 unique donors covering the human lifespan and varying degrees of AD neuropathology. We delineated 13 transcriptionally distinct myeloid subtypes organized into 6 subclasses and identified AD-associated adaptive changes in myeloid cells over aging and disease progression.

View Article and Find Full Text PDF

Background-: Individuals with cocaine use disorder (CUD) who attempt abstinence experience craving and relapse, which poses challenges in treatment. Longitudinal studies linking behavioral manifestations in CUD to the blood transcriptome in living individuals are limited. Therefore, we investigated the connection between drug use behaviors during abstinence with blood transcriptomics.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how genetic variants in specific brain cell regulatory elements contribute to disease risk by analyzing chromatin accessibility in neurons and non-neurons from human brain samples.
  • Researchers found 34,539 open chromatin areas, with only 10.4% being common between neuron and non-neuron cells, indicating that genetic regulation varies by cell type.
  • By identifying 476 regulatory variants with functional impacts, the research enhances understanding of brain gene regulation and its link to diseases, offering valuable insights into potential therapeutic targets.
View Article and Find Full Text PDF

Microglia, the innate immune cells of the central nervous system, have been genetically implicated in multiple neurodegenerative diseases. We previously mapped the genetic regulation of gene expression and mRNA splicing in human microglia, identifying several loci where common genetic variants in microglia-specific regulatory elements explain disease risk loci identified by GWAS. However, identifying genetic effects on splicing has been challenging due to the use of short sequencing reads to identify causal isoforms.

View Article and Find Full Text PDF

Non-coding variants increase risk of neuropsychiatric disease. However, our understanding of the cell-type specific role of the non-coding genome in disease is incomplete. We performed population scale (N=1,393) chromatin accessibility profiling of neurons and non-neurons from two neocortical brain regions: the anterior cingulate cortex and dorsolateral prefrontal cortex.

View Article and Find Full Text PDF

Non-coding variants increase risk of neuropsychiatric disease. However, our understanding of the cell-type specific role of the non-coding genome in disease is incomplete. We performed population scale (N=1,393) chromatin accessibility profiling of neurons and non-neurons from two neocortical brain regions: the anterior cingulate cortex and dorsolateral prefrontal cortex.

View Article and Find Full Text PDF

The human brain is a complex organ comprised of distinct cell types, and the contribution of the 3D genome to lineage specific gene expression remains poorly understood. To decipher cell type specific genome architecture, and characterize fine scale changes in the chromatin interactome across neural development, we compared the 3D genome of the human fetal cortical plate to that of neurons and glia isolated from the adult prefrontal cortex. We found that neurons have weaker genome compartmentalization compared to glia, but stronger TADs, which emerge during fetal development.

View Article and Find Full Text PDF

Nucleotide variants in cell type-specific gene regulatory elements in the human brain are major risk factors of human disease. We measured chromatin accessibility in sorted neurons and glia from 1,932 samples of human postmortem brain and identified 34,539 open chromatin regions with chromatin accessibility quantitative trait loci (caQTL). Only 10.

View Article and Find Full Text PDF

To characterize the dysregulation of chromatin accessibility in Alzheimer's disease (AD), we generated 636 ATAC-seq libraries from neuronal and nonneuronal nuclei isolated from the superior temporal gyrus and entorhinal cortex of 153 AD cases and 56 controls. By analyzing a total of ~20 billion read pairs, we expanded the repertoire of known open chromatin regions (OCRs) in the human brain and identified cell-type-specific enhancer-promoter interactions. We show that interindividual variability in OCRs can be leveraged to identify cis-regulatory domains (CRDs) that capture the three-dimensional structure of the genome (3D genome).

View Article and Find Full Text PDF

Microglia are brain myeloid cells that play a critical role in neuroimmunity and the etiology of Alzheimer's disease (AD), yet our understanding of how the genetic regulatory landscape controls microglial function and contributes to AD is limited. Here, we performed transcriptome and chromatin accessibility profiling in primary human microglia from 150 donors to identify genetically driven variation and cell-specific enhancer-promoter (E-P) interactions. Integrative fine-mapping analysis identified putative regulatory mechanisms for 21 AD risk loci, of which 18 were refined to a single gene, including 3 new candidate risk genes (KCNN4, FIBP and LRRC25).

View Article and Find Full Text PDF

To discover hypothalamic genes that might play a role in regulating energy balance, we carried out a microarray screen for genes induced by a 48-h fast in male C57Bl/6J mouse hypothalamus. One such gene was Fkbp51 (FK506 binding protein 5; Locus NP_034350). The product of this gene is of interest because it blocks glucocorticoid action, suggesting that fasting-induced elevation of this gene in the hypothalamus may reduce glucocorticoid negative feedback, leading to elevated glucocorticoid levels, thus promoting obese phenotypes.

View Article and Find Full Text PDF

Obesity is characterized by whole-body insulin resistance, yet the expression of many insulin-stimulated genes, including leptin, is elevated in obesity. These observations suggest that insulin resistance may depend on tissue type and gene. To address this hypothesis, we examined the regulation of immediate-early gene expression in liver and adipose tissue after injection of insulin and glucose, in lean insulin-sensitive, and in A(y)/a obese insulin-sensitive and obese insulin-resistant mice.

View Article and Find Full Text PDF