Distributed feedback laser diodes (DFBs) serve as simple, compact, narrow-band light sources supporting a wide range of photonic applications. Typical linewidths are on the order of sub-MHz for free-running III-V DFBs at infrared wavelengths, but linewidths of short-wavelength GaN-based DFBs are considerably worse or unreported. Here, we present a free-running InGaN DFB operating at 443 nm with an intrinsic linewidth of 685 kHz at a continuous wave output power of 40 mW.
View Article and Find Full Text PDFA novel deep-ridge laser structure with atomic-layer deposition (ALD) sidewall passivation was proposed that enhances the optical characteristics of 8-µm ridge width III-nitride violet lasers on freestanding m-plane GaN substrates. The internal loss was determined using the variable stripe length method, where the laser structure with ALD sidewall passivation showed lower internal loss compared to the conventional shallow-ridge laser design. ALD sidewall passivation plays a critical role in device improvements; compared to the lasers without ALD sidewall passivation, the lasers with ALD sidewall passivation yield improved optoelectrical performance and longer lifetime under continuous-wave operation at high current density.
View Article and Find Full Text PDFHighly efficient long-wavelength InGaN LEDs have been a research focus in nitride LEDs for their potential applications in displays and solid-state lighting. A key breakthrough has been the use of laterally injected quantum wells via naturally occurring V-defects which promote hole injection through semipolar sidewalls and help to overcome the barriers to carrier injection that plague long wavelength nitride LEDs. In this article, we study V-defect engineered LEDs on (0001) patterned sapphire substrates (PSS) and GaN on (111) Si.
View Article and Find Full Text PDFPhased-array metasurfaces enable the imprinting of complex beam structures onto coherent incident light. Recent demonstrations of phased-array metasurfaces highlight possibilities for achieving similar control in light-emitting diodes (LEDs). However, phased-array metasurface LEDs have not yet been demonstrated owing to the complexities of integrating device stacks and electrodes within nanopatterned metasurfaces.
View Article and Find Full Text PDFAlGaN-based UV-A LEDs have wide applications in medical treatment and chemical sensing; however, their efficiencies are still far behind visible LEDs or even shorter wavelengths UV-C counterparts because of the large lattice mismatch between the low-Al-content active region and the AlN substrate. In this report, we investigated the composition and thickness of the quantum barrier in the active region in terms of LED performance. Due to the improved strain management and better carrier confinement, efficient UV-A LEDs (320 nm - 330 nm) with EQEs up to 6.
View Article and Find Full Text PDFWe demonstrate vertical integration of nitride-based blue/green micro-light-emitting diodes (µLEDs) stacks with independent junctions control using hybrid tunnel junction (TJ). The hybrid TJ was gown by metal organic chemical vapor deposition (p GaN) and molecular-beam epitaxy (n GaN). Uniform blue, green and blue/green emission can be generated from different junction diodes.
View Article and Find Full Text PDFPhased-array metasurfaces grant the ability to arbitrarily shape the wavefront of light. As such, they have been used as various optical elements including waveplates, lenses, and beam deflectors. Luminescent metasurfaces, on the other hand, have largely comprised uniform arrays and are therefore unable to provide the same control over the wavefront of emitted light.
View Article and Find Full Text PDFDeep-ultraviolet (DUV) optoelectronics require innovative light collimation and extraction schemes for wall-plug efficiency improvements. In this work, we computationally survey material limitations and opportunities for intense, wavelength-tunable DUV reflection using AlN-based periodic hole and pillar arrays. Refractive-index limitations for underlayer materials supporting reflection were identified, and MgF was chosen as a suitable low-index underlayer for further study.
View Article and Find Full Text PDFUsing one material system from the near infrared into the ultraviolet is an attractive goal, and may be achieved with (In,Al,Ga)N. This III-N material system, famous for enabling blue and white solid-state lighting, has been pushing towards longer wavelengths in more recent years. With a bandgap of about 0.
View Article and Find Full Text PDFIn this work, we present fully transparent metal organic chemical vapor deposition (MOCVD)-grown InGaN cascaded micro-light-emitting diodes (µLEDs) with independent junction control. The cascaded µLEDs consisted of a blue emitting diode, a tunnel junction (TJ), a green emitting diode, and a TJ, without using any conductive oxide layer. We can control the injection of carriers into blue, green, and blue/green junctions in the same device independently, which show high optical and electrical performance.
View Article and Find Full Text PDFPhased-array metasurfaces have been extensively used for wavefront shaping of coherent incident light. Due to the incoherent nature of spontaneous emission, the ability to similarly tailor photoluminescence remains largely unexplored. Recently, unidirectional photoluminescence from InGaN/GaN quantum-well metasurfaces incorporating one-dimensional phase profiles has been shown.
View Article and Find Full Text PDFNanoscale light emitting diodes (nanoLEDs, diameter < 1 µm), with active and sacrificial multi-quantum well (MQW) layers epitaxially grown via metal organic chemical vapor deposition, were fabricated and released into solution using a combination of colloidal lithography and photoelectrochemical (PEC) etching of the sacrificial MQW layer. PEC etch conditions were optimized to minimize undercut roughness, and thus limit damage to the active MQW layer. NanoLED emission was blue-shifted ∼10 nm from as-grown (unpatterned) LED material, hinting at strain relaxation in the active InGaN MQW layer.
View Article and Find Full Text PDFViolet semipolar (20-2-1) InGaN microcavity light-emitting diodes (MC-LED) with a 200 nm ultra-short cavity length were demonstrated. The emission wavelength was 419 nm with a spectrum width of 20 nm. The external quantum efficiency (EQE) of MC-LED was constant at 0.
View Article and Find Full Text PDFSingle-frequency blue laser sources are of interest for an increasing number of emerging applications but are still difficult to implement and expensive to fabricate and suffer from poor robustness. Here a novel and universal grating design to realize distributed optical feedback in visible semiconductor laser diodes (LDs) was demonstrated on a semipolar InGaN LD, and its unique effect on the laser performance was investigated. For the first time, to the best of our knowledge, a low threshold voltage, record-high power output, and ultra-narrow single-mode lasing were simultaneously obtained on the new laser structure with a thinner p-GaN layer and a third-order phase-shifted embedded dielectric grating.
View Article and Find Full Text PDFRefractometry is a ubiquitous technique for process control and substance identification in the chemical and biomedical fields. Herein, we present an all-dielectric, wafer-scalable, and compact Fabry-Pérot microcavity (FPMC) device for refractive index (RI) sensing. The FPMC consists of a highly porous SiO microcavity capped with a thin, quasi-periodically patterned TiO hole array partial reflector that enables rapid, nanoliter-scale analyte transport to and from the sensor.
View Article and Find Full Text PDFWe reported significant improvements in device speed by reducing the quantum barrier (QB) thicknesses in the InGaN/GaN multiple quantum well (MQW) photodetectors (PDs). A 3-dB bandwidth of 700 MHz was achieved with a reverse bias of -6 V. Carrier escape lifetimes due to carrier trapping in the quantum wells (QWs) were obtained from both simulation and experimental fitting, identifying carrier trapping as the major speed limiting factor in the InGaN/GaN MQW PDs.
View Article and Find Full Text PDFWe demonstrate InGaN-based semipolar 560 nm micro-light-emitting diodes with 2.5% EQE on high-quality and low-defect-density (20-21) GaN templates grown on scalable and low-cost sapphire substrates. Through transmission electron microscopy observations, we discuss how the management of misfit dislocations and their confinement in areas away from the active light-emitting region is necessary for improving device performance.
View Article and Find Full Text PDFHigh performance InGaN micro-size light-emitting diodes (µLEDs) with epitaxial tunnel junctions (TJs) were successfully demonstrated using selective area growth (SAG) by metalorganic chemical vapor deposition (MOCVD). Patterned n + GaN/n-GaN layers with small holes were grown on top of standard InGaN blue LEDs to form TJs using SAG. TJ µLEDs with squared mesa ranging from 10×10 to 100×100 µm were fabricated.
View Article and Find Full Text PDFWe demonstrate a simple method to fabricate efficient, electrically driven, polarized, and phosphor-free white semipolar (20-21) InGaN light-emitting diodes (LEDs) by adopting a top blue quantum well (QW) and a bottom yellow QW directly grown on (20-21) semipolar bulk GaN substrate. At an injection current of 20 mA, the fabricated 0.1 mm size regular LEDs show an output power of 0.
View Article and Find Full Text PDFThe electrical and optical improvements of AlGaInP micro-light-emitting diodes (µLEDs) using atomic-layer deposition (ALD) sidewall passivation were demonstrated. Due to the high surface recombination velocity and minority carrier diffusion length of the AlGaInP material system, devices without sidewall passivation suffered from high leakage and severe drop in external quantum efficiency (EQE). By employing ALD sidewall treatments, the 20×20 µm µLEDs resulted in greater light output power, size-independent leakage current density, and lower ideality factor.
View Article and Find Full Text PDFThe last two decades have shown an increasing need for GaN-based laser diodes (LDs), which are currently only grown on bulk GaN substrates, which remain to date very expensive and/or only available in small sizes. The ever growing laser market will expand in the coming years, thanks to the development of automotive laser lighting, high-speed Li-Fi optical data transmission, LiDAR sensing for autonomous vehicles and smart cities, head-up displays, and AR/VR systems, in addition to biomedical and further industrial applications. These emerging technologies demand for mass-production of GaN-based lasers to be produced on large-size, low-cost, and industrially compatible substrates.
View Article and Find Full Text PDFWe report III-nitride vertical-cavity surface-emitting lasers (VCSELs) with buried tunnel junction (BTJ) contacts. To form the BTJs, GaN TJ contacts were etched away outside the aperture followed by n-GaN regrowth for current spreading. Under pulsed operation, a BTJ VCSEL with a 14 µm diameter aperture showed a lasing wavelength of 430 nm, a threshold current of ∼20 mA (12 kA/cm), and a maximum output power of 2.
View Article and Find Full Text PDFDiscovering ways to increase the LED light extraction efficiency (LEE) should help create the largest performance improvement in the power of UV AlGaN LEDs. Employing surface roughening to increase the LEE of typical AlGaN UV LEDs is challenging and not well understood, yet it can be achieved easily in AlGaN LEDs grown on SiC. We fabricate thin-film UV LEDs (~294-310 nm) grown on SiC-with reflective contacts and roughened emission surface-to study and optimize KOH roughening of N-face AlN on the LEE as a function of roughened AlN pyramid size and KOH solution temperature.
View Article and Find Full Text PDFA nonpolar edge emitting thin film InGaN laser diode has been separated from its native substrate by mechanical tearing with adhesive tape, combining the benefits of Epitaxial Lateral Overgrowth (ELO) and cleavability of nonpolar GaN crystal. The essence of ELO is mainly to weakening strength between native substrate and the fabricated laser device on top of it. We report a 3 mm long laser bar removed from its native GaN substrate.
View Article and Find Full Text PDF