Publications by authors named "Steven P Angus"

The MEK inhibitor selumetinib induces objective responses and provides clinical benefit in children with neurofibromatosis type 1 (NF1) and inoperable plexiform neurofibromas (PNs). To evaluate whether similar outcomes were possible in adult patients, in whom PN growth is generally slower than in pediatric patients, we conducted an open-label phase 2 study of selumetinib in adults with NF1 PNs. The study was designed to evaluate objective response rate (primary objective), tumor volumetric responses, patient-reported outcomes and pharmacodynamic effects in PN biopsies.

View Article and Find Full Text PDF

Most cells in solid tumors are exposed to oxygen levels between 0.5% and 5%. We developed an approach that allows collection, processing, and evaluation of cancer and non-cancer cells under physioxia, while preventing exposure to ambient air.

View Article and Find Full Text PDF

Juvenile myelomonocytic leukemia (JMML) is a hematologic malignancy of young children caused by mutations that increase Ras signaling output. Hematopoietic stem cell transplantation (HSCT) is a potentially curative treatment, but patients with relapsed or refractory (advanced) disease have dismal outcomes. This phase II trial evaluated the safety and efficacy of trametinib, an oral MEK1/2 inhibitor, in patients with advanced JMML.

View Article and Find Full Text PDF

Introduction: Approximately 50% of melanomas harbor an activating mutation. Standard of care involves a combination of inhibitors targeting mutant BRAF and MEK1/2, the substrate for BRAF in the MAPK pathway. loss-of-function mutations occur in ~40% of BRAFV600E melanomas, resulting in increased PI3K/AKT activity that enhances resistance to BRAF/MEK combination inhibitor therapy.

View Article and Find Full Text PDF

Schwann cells are vital to development and maintenance of the peripheral nervous system and their dysfunction has been implicated in a range of neurological and neoplastic disorders, including -related schwannomatosis. We developed a novel human induced pluripotent stem cell (hiPSC) model to study Schwann cell differentiation in health and disease. We performed transcriptomic, immunofluorescence, and morphological analysis of hiPSC derived Schwann cell precursors (SPCs) and terminally differentiated Schwann cells (SCs) representing distinct stages of development.

View Article and Find Full Text PDF

Purpose: Plexiform neurofibromas (PNF) are benign peripheral nerve sheath tumors (PNST) associated with neurofibromatosis type 1 (NF1). Despite similar histologic appearance, these neoplasms exhibit diverse evolutionary trajectories, with a subset progressing to malignant peripheral nerve sheath tumor (MPNST), the leading cause of premature death in individuals with NF1. Malignant transformation of PNF often occurs through the development of atypical neurofibroma (ANF) precursor lesions characterized by distinct histopathologic features and CDKN2A copy-number loss.

View Article and Find Full Text PDF

Six new ravidomycin analogs (-, , and ) were isolated from sp. Am59 using UV- and LCMS-guided separation based on Global Natural Products Social (GNPS) molecular networking analysis. Furthermore, we isolated fucomycin V (), which possesses the same chromophore as ravidomycin but features a d-fucopyranose instead of d-ravidosamine.

View Article and Find Full Text PDF

Purpose: Plexiform neurofibromas (PNF) are peripheral nerve sheath tumors that cause significant morbidity in persons with neurofibromatosis type 1 (NF1), yet treatment options remain limited. To identify novel therapeutic targets for PNF, we applied an integrated multi-omic approach to quantitatively profile kinome enrichment in a mouse model that has predicted therapeutic responses in clinical trials for NF1-associated PNF with high fidelity.

Experimental Design: Utilizing RNA sequencing combined with chemical proteomic profiling of the functionally enriched kinome using multiplexed inhibitor beads coupled with mass spectrometry, we identified molecular signatures predictive of response to CDK4/6 and RAS/MAPK pathway inhibition in PNF.

View Article and Find Full Text PDF

Mutations in MAPT (microtubule-associated protein tau) cause frontotemporal dementia (FTD). MAPT mutations are associated with abnormal tau phosphorylation levels and accumulation of misfolded tau protein that can propagate between neurons ultimately leading to cell death (tauopathy). Recently, a p.

View Article and Find Full Text PDF

Neurofibromatosis Type 2 (NF2) is an autosomal dominant genetic syndrome caused by mutations in the NF2 tumor suppressor gene resulting in multiple schwannomas and meningiomas. There are no FDA approved therapies for these tumors and their relentless progression results in high rates of morbidity and mortality. Through a combination of high throughput screens, preclinical in vivo modeling, and evaluation of the kinome en masse, we identified actionable drug targets and efficacious experimental therapeutics for the treatment of NF2 related schwannomas and meningiomas.

View Article and Find Full Text PDF

Inhibition of the HER2/ERBB2 receptor is a keystone to treating HER2-positive malignancies, particularly breast cancer, but a significant fraction of HER2-positive (HER2+) breast cancers recur or fail to respond. Anti-HER2 monoclonal antibodies, like trastuzumab or pertuzumab, and ATP active site inhibitors like lapatinib, commonly lack durability because of adaptive changes in the tumor leading to resistance. HER2+ cell line responses to inhibition with lapatinib were analyzed by RNAseq and ChIPseq to characterize transcriptional and epigenetic changes.

View Article and Find Full Text PDF

Dysregulation of PI3K/Akt signaling is a dominant feature in basal-like or triple-negative breast cancers (TNBC). However, the mechanisms regulating this pathway are largely unknown in this subset of aggressive tumors. Here we demonstrate that the transcription factor SOX4 is a key regulator of PI3K signaling in TNBC.

View Article and Find Full Text PDF

Neurofibromatosis type 1 (NF1) plexiform neurofibromas (PNs) are progressive, multicellular neoplasms that cause morbidity and may transform to sarcoma. Treatment of Nf1;Postn-Cre mice with cabozantinib, an inhibitor of multiple tyrosine kinases, caused a reduction in PN size and number and differential modulation of kinases in cell lineages that drive PN growth. Based on these findings, the Neurofibromatosis Clinical Trials Consortium conducted a phase II, open-label, nonrandomized Simon two-stage study to assess the safety, efficacy and biologic activity of cabozantinib in patients ≥16 years of age with NF1 and progressive or symptomatic, inoperable PN ( NCT02101736 ).

View Article and Find Full Text PDF

Loss of the tumor suppressor leads to activation of RAS effector pathways, which are therapeutically targeted by inhibition of mTOR (mTORi) or MEK (MEKi). However, therapeutic inhibition of RAS effectors leads to the development of drug resistance and ultimately disease progression. To investigate molecular signatures in the context of loss and subsequent acquired drug resistance, we analyzed the exomes, transcriptomes, and kinomes of -mutant mouse tumor cell lines and derivatives of these lines that acquired resistance to either MEKi or mTORi.

View Article and Find Full Text PDF

Purpose: Plexiform neurofibromas (pNF) develop in children with neurofibromatosis type 1 (NF1) and can be associated with several skeletal comorbidities. Preclinical mouse studies revealed Nf1 deficiency in osteoprogenitor cells disrupts, in a MEK-dependent manner, pyrophosphate (PPi) homeostasis and skeletal mineralization. The etiology of NF-associated skeletal manifestations remains unknown.

View Article and Find Full Text PDF

Background: Aberrant Myc expression plays a critical role in various tumors, including non-Hodgkin lymphoma (NHL). Myc-positive lymphoma is clinically aggressive, more resistant to chemotherapy, and associated with high mortality.

Objective: The current study aimed to show inhibition of aurora A kinase (AURKA) may overcome resistance to chemotherapy and improve outcomes in Myc-overexpressing lymphoma.

View Article and Find Full Text PDF

Screening of an inhibitor library targeting kinases and epigenetic regulators identified several molecules having antiproliferative synergy with extraterminal domain (BET) bromodomain (BD) inhibitors (JQ1, OTX015) in triple-negative breast cancer (TNBC). GSK2801, an inhibitor of BAZ2A/B BDs, of the imitation switch chromatin remodeling complexes, and BRD9, of the SWI/SNF complex, demonstrated synergy independent of BRD4 control of P-TEFb-mediated pause-release of RNA polymerase II. GSK2801 or RNAi knockdown of BAZ2A/B with JQ1 selectively displaced BRD2 at promoters/enhancers of ETS-regulated genes.

View Article and Find Full Text PDF

Schwannomas are common, highly morbid and medically untreatable tumors that can arise in patients with germ line as well as somatic mutations in neurofibromatosis type 2 (NF2). These mutations most commonly result in the loss of function of the NF2-encoded protein, Merlin. Little is known about how Merlin functions endogenously as a tumor suppressor and how its loss leads to oncogenic transformation in Schwann cells (SCs).

View Article and Find Full Text PDF

Background: Meningiomas are the most common primary brain tumor in adults, and somatic loss of the neurofibromatosis 2 (NF2) tumor suppressor gene is a frequent genetic event. There is no effective treatment for tumors that recur or continue to grow despite surgery and/or radiation. Therefore, targeted therapies that either delay tumor progression or cause tumor shrinkage are much needed.

View Article and Find Full Text PDF

Protein binding specificities can be manipulated by redesigning contacts that already exist at an interface or by expanding the interface to allow interactions with residues adjacent to the original binding site. Previously, we developed a strategy, called AnchorDesign, for expanding interfaces around linear binding epitopes. The epitope is embedded in a loop of a scaffold protein, in our case a monobody, and then surrounding residues on the monobody are optimized for binding using directed evolution or computational design.

View Article and Find Full Text PDF

Multiplexed small molecule inhibitors covalently bound to Sepharose beads (MIBs) were used to capture functional kinases in luminal, HER2-enriched and triple negative (basal-like and claudin-low) breast cancer cell lines and tumors. Kinase MIB-binding profiles at baseline without perturbation proteomically distinguished the four breast cancer subtypes. Understudied kinases, whose disease associations and pharmacology are generally unexplored, were highly represented in MIB-binding taxonomies and are integrated into signaling subnetworks with kinases that have been previously well characterized in breast cancer.

View Article and Find Full Text PDF

Targeted therapeutics that are initially effective in cancer patients nearly invariably engender resistance at some stage, an inherent challenge in the use of any molecular-targeted drug in cancer settings. In this study, we evaluated resistance mechanisms arising in metastatic melanoma to MAPK pathway kinase inhibitors as a strategy to identify candidate strategies to limit risks of resistance. To investigate longitudinal responses, we developed an intravital serial imaging approach that can directly visualize drug response in an inducible RAF-driven, autochthonous murine model of melanoma incorporating a fluorescent reporter allele (tdTomatoLSL).

View Article and Find Full Text PDF

Background: Most novel cancer therapeutics target kinases that are essential to tumor survival. Some of these kinase inhibitors are associated with cardiotoxicity, whereas others appear to be cardiosafe. The basis for this distinction is unclear, as are the molecular effects of kinase inhibitors in the heart.

View Article and Find Full Text PDF

Although targeted inhibition of oncogenic kinase drivers has achieved remarkable patient responses in many cancers, the development of resistance has remained a significant challenge. Numerous mechanisms have been identified, including the acquisition of gatekeeper mutations, activating pathway mutations, and copy number loss or gain of the driver or alternate nodes. These changes have prompted the development of kinase inhibitors with increased selectivity, use of second-line therapeutics to overcome primary resistance, and combination treatment to forestall resistance.

View Article and Find Full Text PDF