Separation of high-activity Bi from Ac for targeted alpha therapy is challenging due to the instability of existing sorbents. Surface-modified carbon materials have shown promise for use in inverse Ac/Bi generators. However, previously reported materials with irregular shapes may limit their applications in column separations.
View Article and Find Full Text PDFMedical Ac/Bi radionuclide generators are designed to provide a local supply of the short-lived Bi for cancer treatment. However, radiation-induced damage to the sorbents commonly used in such radionuclide generators remains a major concern. In this study, the effects of gamma radiation on AG MP-50 cation exchange resin and sulfonated activated carbon (SAC) were studied by analyzing the changes in the morphological characteristics, functional groups, and the La/Bi sorption performance, with La being a suitable non-radioactive substitute for Ac.
View Article and Find Full Text PDFWhile synthesis-properties-performance correlations are being studied for organophosphonic acid grafted TiO , their stability and the impact of the exposure conditions on possible changes in the interfacial surface chemistry remain unexplored. Here, the impact of different ageing conditions on the evolution of the surface properties of propyl- and 3-aminopropylphosphonic acid grafted mesoporous TiO over a period of 2 years is reported, using solid-state P and C NMR, ToF-SIMS and EPR as main techniques. In humid conditions under ambient light exposure, PA grafted TiO surfaces initiate and facilitate photo-induced oxidative reactions, resulting in the formation of phosphate species and degradation of the grafted organic group with a loss of carbon content ranging from 40 to 60 wt %.
View Article and Find Full Text PDFModification of metal oxides with organophosphonic acids (PAs) provides the ability to control and tailor the surface properties. The metal oxide phosphonic acid bond (M-O-P) is known to be stable under harsh conditions, making PAs a promising candidate for the recovery of metals from complex acidic leachates. The thiol functional group is an excellent regenerable scavenging group for these applications.
View Article and Find Full Text PDFAmino-alkylphosphonic acid-grafted TiO materials are of increasing interest in a variety of applications such as metal sorption, heterogeneous catalysis, CO capture, and enzyme immobilization. To date, systematic insights into the synthesis-properties-performance correlation are missing for such materials, albeit giving important know-how towards their applicability and limitations. In this work, the impact of the chain length and modification conditions (concentration and temperature) of amino-alkylphosphonic acid-grafted TiO on the surface properties and adsorption performance of palladium is studied.
View Article and Find Full Text PDFSurface functionalization of complex three-dimensional (3D) porous architectures has not been widely investigated despite their potential in different application domains. In this work, silanization was performed in silica 3D-printed porous structures, and the homogeneity of functional groups within the architecture was investigated by comparing the extent of the functionalization in the walls and core of the monolith. A silica ink was used for direct ink writing (DIW) to shape fibers and monoliths with different architectures and stacking designs.
View Article and Find Full Text PDFPerfluorinated alkylated substances (PFASs) are widely used in industrial and commercial applications, leading to a widespread occurrence of these persistent and harmful contaminants in our environment. Removal of these compounds from surface and waste waters is being mandated by European and U.S.
View Article and Find Full Text PDFA novel adsorbent was designed for selective recovery of cobalt(ii) from synthetic binary cobalt(ii)-nickel(ii) and cobalt(ii)-manganese(ii) solutions, a synthetic multi-element solution and a real aqueous waste stream from the petrochemical sector. The adsorbent consisted of shaped activated carbon-alginate spheres impregnated with Cyanex 272. The synthesis was followed by characterisation using SEM, infrared spectroscopy, BET analysis and elemental analysis.
View Article and Find Full Text PDFIn contrast to most lab-scale batch procedures, a continuous-flow implementation requires a thorough consideration of the solid catalyst design. In a previous study, irregular zeolite pellets were applied in a miniaturized continuous-flow reactor for the Diels-Alder reaction in the construction of norbornene scaffolds. After having faced the challenges of continuous operation, the aim of this study is to exploit catalyst structuring.
View Article and Find Full Text PDFBiocompatible inorganic nano- and microcarriers can be suitable candidates for protein delivery. This study demonstrates facile methods of functionalization by using nanoscale linker molecules to change the protein adsorption capacity of hydroxyapatite (HA) powder. The adsorption capacity of bovine serum albumin as a model protein has been studied with respect to the surface modifications.
View Article and Find Full Text PDFPharmaceutical compounding of capsules is still an important corner stone in today's health care. It allows for a more patient specific treatment plan as opposed to the "one size fits all"-approach, used by the pharmaceutical industry when producing fixed dose finished drug products. However, loss of active pharmaceutical ingredient (API) powder during pharmaceutical capsule compounding can lead to under-dosed finished drug products and annul the beneficiary therapeutic effects for the patient.
View Article and Find Full Text PDFIn the current review we aim to give an overview of the state of the art of the research on (bio)polymer functionalised titanium implants for bone tissue engineering applications. After a short introduction on bone tissue engineering and the requirements the applied materials have to meet, an extensive discussion on titanium in bone tissue engineering will be given. Starting with a short description of both the titanium bulk and surface properties, the requirement for surface modified titanium will be highlighted.
View Article and Find Full Text PDFEur J Pharm Biopharm
November 2010
The influence of the poly(D,L-lactic acid) (PDLLA) coating thickness on the in vitro vancomycin release from a hydroxyapatite (HA) carrier was studied. Microporous HA fibers with a porosity of 51 v% and an average pore diameter of 1.0 μm were fabricated by a diffusion-induced phase separation technique.
View Article and Find Full Text PDFThe repair of large and complex bone defects could be helped by a cell-based bone tissue engineering strategy. A reliable and consistent cell-seeding methodology is a mandatory step in bringing bone tissue engineering into the clinic. However, optimization of the cell-seeding step is only relevant when it can be reliably evaluated.
View Article and Find Full Text PDF