This study presents a possible application of Fourier transform infrared (FTIR) spectrometry and multivariate data analysis, principal component analysis (PCA), and partial least squares-discriminant analysis (PLS-DA) for classifying asbestos and their nonasbestiform analogues. The objectives of the study are: 1) to classify six regulated asbestos types and 2) to classify between asbestos types and their nonasbestiform analogues. The respirable fraction of six regulated asbestos types and their nonasbestiform analogues were prepared in potassium bromide pellets and collected on polyvinyl chloride membrane filters for FTIR measurement.
View Article and Find Full Text PDFThe case study was conducted in an underground coal mine to characterize submicron aerosols at a continuous miner (CM) section, assess the concentrations of diesel aerosols at the longwall (LW) section, and assess the exposures of selected occupations to elemental carbon (EC) and total carbon (TC). The results show that aerosols at the CM sections were a mixture of aerosols freshly generated at the outby portion of the CM section and those generated in the main drifts that supply "fresh air" to the section. The relatively low ambient concentrations and personal exposures of selected occupations suggest that currently applied control strategies and technologies are relatively effective in curtailing exposures to diesel aerosols.
View Article and Find Full Text PDFThe objective of the present study is to find a fast and accurate procedure to measure the length and width of asbestos fibers using images acquired by a scanning electron microscope (SEM), a phase-contrast microscope (PCM), and a polarized light microscope (PLM). The accuracy of the procedure was evaluated by comparing fiber length and width measurements to manual measurements. Four different types of images were used in the evaluation: (1) backscattered electron SEM images of fibrous tremolite, (2) secondary electron SEM images of fibrous grunerite, (3) PCM images of fibrous grunerite, and (4) PLM images of fibrous grunerite.
View Article and Find Full Text PDFSilicosis is a lethal pneumoconiosis for which no therapy is available. Silicosis is a global threat, and more than 2.2 million people per year are exposed to silica in the United States.
View Article and Find Full Text PDFAsbestos Other Elongate Miner Part (2021)
December 2021
The objectives of this study are (1) to separate fibrous grunerite (amosite) by its length using filtration and shaking techniques utilized in a previous study and (2) to create two distinct length groups (short and long) of the amosite with higher output in a cost-effective way. The shaking system included an electrodynamic exciter, a linear power amplifier, and an audio-frequency signal generator and was attached to a cowl sampler as a funnel loaded with a polycarbonate filter. A suspension of amosite was passed through the 10-μm pore size polycarbonate filter in the shaking system and was transferred to a filtration system through five different pore sizes of polycarbonate membrane filters in series from the top: 10-, 5-, 2-, 1-, and 0.
View Article and Find Full Text PDFAccumulation of float coal dust (FCD) in underground mines is an explosion hazard that affects all underground coal mine workers. While this hazard is addressed by the application of rock dust, inadequate rock dusting practices can leave miners exposed to an explosion risk. Researchers at the National Institute for Occupational Safety and Health (NIOSH) have focused on developing a water curtain that removes FCD from the airstream, thereby reducing the buildup of FCD in mine airways.
View Article and Find Full Text PDFThe objective of this study was to investigate the efficacy of an aerodynamic separation scheme for obtaining aerosols with nearly monodisperse fiber lengths as test samples for mechanistic toxicological evaluations. The approach involved the separation of aerosolized glass fibers using an Aerodynamic Aerosol Classifier (AAC) or a multi-cyclone sampling array, followed by the collection of separated samples on filter substrates, and the measurement of each sample fiber length distribution. A glass fiber aerosol with a narrow range of aerodynamic sizes was selected and sampled with the AAC or multi-cyclone sampling array in two separate setups.
View Article and Find Full Text PDFA person-wearable dust monitor that provides nearly real-time, mass-based readings of respirable dust was developed for use in underground coal mines. This personal dust monitor (PDM) combined dust sampling instrumentation with a cap lamp (and battery) into one belt-wearable unit, with the air inlet mounted on the cap lamp. However, obsolescence of belt-carried cap lamp and batteries in coal mining ensued and led end users to request that the cap lamp and battery be removed from the PDM.
View Article and Find Full Text PDFFloat coal dust, generated by mining operations, is distributed throughout mine airways by ventilating air designed to purge gases and respirable dust. Float coal dust poses an explosion hazard in the event of a methane ignition. Current regulation requires the application of inert rock dust in areas subjected to float coal dust in order to mitigate the hazard.
View Article and Find Full Text PDFFilter-based toxicology studies are conducted to establish the biological plausibility of the well-established health impacts associated with fine particulate matter (PM) exposure. Ambient PM collected on filters is extracted into solution for toxicology applications, but frequently, characterization is nonexistent or only performed on filter-based PM, without consideration of compositional differences that occur during the extraction processes. To date, the impact of making associations to measured components in ambient instead of extracted PM has not been investigated.
View Article and Find Full Text PDFBackground: Occupational exposure to crystalline silica is a well-established occupational hazard. Once in the lung, crystalline silica particles can result in the activation of alveolar macrophages (AM), potentially leading to silicosis, a fibrotic lung disease. Because the activation of alveolar macrophages is the beginning step in a complicated inflammatory cascade, it is necessary to define the particle characteristics resulting in this activation.
View Article and Find Full Text PDFResearch on the health effects of fine particulate matter (PM2.5) frequently disregards the differences in particle composition between that measured on an ambient filter versus that measured in the corresponding extraction solution used for toxicological testing. This study presents a novel method for characterizing the differences, in metallic and organic species, between the ambient samples and the corresponding extracted solutions through characterization of extracted PM2.
View Article and Find Full Text PDFIn this study a serial multi-cyclone sampling array capable of simultaneously sampling particles of multiple size fractions, from an occupational environment, for use in in vivo and in vitro toxicity studies and physical/chemical characterization, was developed and tested. This method is an improvement over current methods used to size-segregate occupational aerosols for characterization, due to its simplicity and its ability to collect sufficient masses of nano- and ultrafine sized particles for analysis. This method was evaluated in a chamber providing a uniform atmosphere of dust concentrations using crystalline silica particles.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
August 2013
In the mouse lung, Escherichia coli LPS can decrease surfactant protein-B (SFTPB) mRNA and protein concentrations. LPS also regulates the expression, synthesis, and concentrations of a variety of gene and metabolic products that inhibit SFTPB gene expression. The purpose of the present study was to determine whether LPS acts directly or indirectly on pulmonary epithelial cells to trigger signaling pathways that inhibit SFTPB expression, and whether the transcription factor CCAAT/enhancer binding protein (C/EBP)-β (CEBPB) is a downstream inhibitory effector.
View Article and Find Full Text PDFThe standard method for determining diesel particulate matter (DPM) exposures in underground metal/ nonmetal mines provides the average exposure concentration for an entire working shift, and several weeks might pass before results are obtained. The main problem with this approach is that it only indicates that an overexposure has occurred rather than providing the ability to prevent an overexposure or detect its cause. Conversely, real-time measurement would provide miners with timely information to allow engineering controls to be deployed immediately and to identify the major factors contributing to any overexposures.
View Article and Find Full Text PDFA primary means to reduce environmental levels of diesel particulate matter (DPM) exposure to miners is to reduce the amount of DPM emission from the engine. A quick and economic method to estimate engine particulate emission levels has been developed. The method relies on the measurement of pressure increase across a filter element that is briefly used to collect a DPM sample directly from the engine exhaust.
View Article and Find Full Text PDFThe United States National Institute for Occupational Safety and Health, through an informal partnership with industry, labor, and the United States Mine Safety and Health Administration, has developed and tested a new instrument known as the Personal Dust Monitor (PDM). The new dust monitor is an integral part of the cap lamp that coal miners normally carry to work and provides continuous information about the concentration of respirable coal mine dust within the breathing zone of that individual. Previous laboratory testing demonstrated that there is a 95% confidence that greater than 95% of individual PDM measurements fall within +/-25% of reference measurements.
View Article and Find Full Text PDFEnviron Sci Technol
April 2005
A diesel particulate matter analyzer capable of direct, real-time measurement of engine exhaust particulate is necessary to effectively institute source control technology currently being used on diesel equipment and to ensure that the control measures are working. To investigate the potential of a differential pressure monitor to measure diesel particulate matter in undiluted exhaust, samples were collected from three different diesel engines--Kubota, Isuzu, and Deutz--running under 12 different RPM and load scenarios. These measurements were compared to elemental carbon concentrations in the sampled exhaust as determined by using the NIOSH 5040 analytical method.
View Article and Find Full Text PDF