The analysis of gene function through RNA interference (RNAi)-based reverse genetics in plant parasitic nematodes (PPNs) remains inexplicably reliant on the use of long double-stranded RNA (dsRNA) silencing triggers; a practice inherently disadvantageous due to the introduction of superfluous dsRNA sequence, increasing chances of aberrant or off-target gene silencing through interactions between nascent short interfering RNAs (siRNAs) and non-cognate mRNA targets. Recently, we have shown that non-nematode, long dsRNAs have a propensity to elicit profound impacts on the phenotype and migrational abilities of both root knot and cyst nematodes. This study presents, to our knowledge for the first time, gene-specific knockdown of FMRFamide-like peptide (flp) transcripts, using discrete 21bp siRNAs in potato cyst nematode Globodera pallida, and root knot nematode Meloidogyne incognita infective (J2) stage juveniles.
View Article and Find Full Text PDFNine non-nematode-derived double-stranded RNAs (dsRNAs), designed for use as controls in RNA interference (RNAi) screens of neuropeptide targets, were found to induce aberrant phenotypes and an unexpected inhibitory effect on motility of root knot nematode Meloidogyne incognita J2s following 24h soaks in 0.1 mg/ml dsRNA; a simple soaking procedure which we have found to elicit profound knockdown of neuronal targets in Globodera pallida J2s. We have established that this inhibitory phenomenon is both time- and concentration-dependent, as shorter 4h soaks in 0.
View Article and Find Full Text PDFThe potato cyst nematode Globodera pallida is a serious pest of potato crops. Nematode FMRFamide-like peptides (FLPs) are one of the most diverse neuropeptide families known, and modulate sensory and motor functions. As neuromuscular function is a well-established target for parasite control, parasitic nematode FLP signaling has significant potential in novel control strategies.
View Article and Find Full Text PDF