In this paper we describe the design and the ideas motivating a new Continual Learning benchmark for Autonomous Driving (CLAD), that focuses on the problems of object classification and object detection. The benchmark utilises SODA10M, a recently released large-scale dataset that concerns autonomous driving related problems. First, we review and discuss existing continual learning benchmarks, how they are related, and show that most are extreme cases of continual learning.
View Article and Find Full Text PDFIEEE Trans Med Imaging
August 2018
Limited capture range, and the requirement to provide high quality initialization for optimization-based 2-D/3-D image registration methods, can significantly degrade the performance of 3-D image reconstruction and motion compensation pipelines. Challenging clinical imaging scenarios, which contain significant subject motion, such as fetal in-utero imaging, complicate the 3-D image and volume reconstruction process. In this paper, we present a learning-based image registration method capable of predicting 3-D rigid transformations of arbitrarily oriented 2-D image slices, with respect to a learned canonical atlas co-ordinate system.
View Article and Find Full Text PDFIEEE Trans Med Imaging
October 2017
In this paper, we present a novel method for the correction of motion artifacts that are present in fetal magnetic resonance imaging (MRI) scans of the whole uterus. Contrary to current slice-to-volume registration (SVR) methods, requiring an inflexible anatomical enclosure of a single investigated organ, the proposed patch-to-volume reconstruction (PVR) approach is able to reconstruct a large field of view of non-rigidly deforming structures. It relaxes rigid motion assumptions by introducing a specific amount of redundant information that is exploited with parallelized patchwise optimization, super-resolution, and automatic outlier rejection.
View Article and Find Full Text PDFNeural circuits in the medial entorhinal cortex (MEC) encode an animal's position and orientation in space. Within the MEC spatial representations, including grid and directional firing fields, have a laminar and dorsoventral organization that corresponds to a similar topography of neuronal connectivity and cellular properties. Yet, in part due to the challenges of integrating anatomical data at the resolution of cortical layers and borders, we know little about the molecular components underlying this organization.
View Article and Find Full Text PDF